Détail de l'auteur
Auteur Yuan Xu |
Documents disponibles écrits par cet auteur (2)



Parsing of urban facades from 3D point clouds based on a novel multi-view domain / Wei Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
![]()
[article]
Titre : Parsing of urban facades from 3D point clouds based on a novel multi-view domain Type de document : Article/Communication Auteurs : Wei Wang, Auteur ; Yuan Xu, Auteur ; Yingchao Ren, Auteur ; Gang Wang, Auteur Année de publication : 2021 Article en page(s) : pp 283-293 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] données localisées 3D
[Termes IGN] façade
[Termes IGN] fusion de données
[Termes IGN] milieu urbain
[Termes IGN] précision de la classification
[Termes IGN] segmentation hiérarchique
[Termes IGN] segmentation multi-échelle
[Termes IGN] semis de pointsRésumé : (Auteur) Recently, performance improvement in facade parsing from 3D point clouds has been brought about by designing more complex network structures, which cost huge computing resources and do not take full advantage of prior knowledge of facade structure. Instead, from the perspective of data distribution, we construct a new hierarchical mesh multi-view data domain based on the characteristics of facade objects to achieve fusion of deep-learning models and prior knowledge, thereby significantly improving segmentation accuracy. We comprehensively evaluate the current mainstream method on the RueMonge 2014 data set and demonstrate the superiority of our method. The mean intersection-over-union index on the facade-parsing task reached 76.41%, which is 2.75% higher than the current best result. In addition, through comparative experiments, the reasons for the performance improvement of the proposed method are further analyzed. Numéro de notice : A2021-333 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.4.283 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.4.283 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97531
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 283-293[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021041 SL Revue Centre de documentation Revues en salle Disponible Scene classification of remotely sensed images via densely connected convolutional neural networks and an ensemble classifier / Qimin Cheng in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
![]()
[article]
Titre : Scene classification of remotely sensed images via densely connected convolutional neural networks and an ensemble classifier Type de document : Article/Communication Auteurs : Qimin Cheng, Auteur ; Yuan Xu, Auteur ; Peng Fu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 295-308 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] orthoimage
[Termes IGN] scèneRésumé : (Auteur) Deep learning techniques, especially convolutional neural networks, have boosted performance in analyzing and understanding remotely sensed images to a great extent. However, existing scene-classification methods generally neglect local and spatial information that is vital to scene classification of remotely sensed images. In this study, a method of scene classification for remotely sensed images based on pretrained densely connected convolutional neural networks combined with an ensemble classifier is proposed to tackle the under-utilization of local and spatial information for image classification. Specifically, we first exploit the pretrained DenseNet and fine-tuned it to release its potential in remote-sensing image feature representation. Second, a spatial-pyramid structure and an improved Fisher-vector coding strategy are leveraged to further strengthen representation capability and the robustness of the feature map captured from convolutional layers. Then we integrate an ensemble classifier in our network architecture considering that lower attention to feature descriptors. Extensive experiments are conducted, and the proposed method achieves superior performance on UC Merced, AID, and NWPU-RESISC45 data sets. Numéro de notice : A2021-334 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.295 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.3.295 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97533
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 295-308[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021041 SL Revue Centre de documentation Revues en salle Disponible