Détail de l'auteur
Auteur Bobo Xi |
Documents disponibles écrits par cet auteur (1)



Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification / Bobo Xi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
![]()
[article]
Titre : Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification Type de document : Article/Communication Auteurs : Bobo Xi, Auteur ; Jiaojiao Li, Auteur ; Yunsong Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5114 - 5130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] segmentation multi-échelle
[Termes IGN] superpixelRésumé : (auteur) Recently, multiscale spatial features have been widely utilized to improve the hyperspectral image (HSI) classification performance. However, fixed-size neighborhood involving the contextual information probably leads to misclassifications, especially for the boundary pixels. Additionally, it has been demonstrated that deep neural network (DNN) is practical to extract representative features for the classification tasks. Nevertheless, under the condition of high dimensionality versus small sample sizes, DNN tends to be over-fitting and it is generally time-consuming due to the deep-level feature learning process. To alleviate the aforementioned issues, we propose a multiscale context-aware ensemble deep kernel extreme learning machine (MSC-EDKELM) for efficient HSI classification. First, the scene of the HSI data set is over-segmented in multiscale via using the adaptive superpixel segmentation technique. Second, superpixel pattern (SP) and attentional neighboring superpixel pattern (ANSP) are generated by leveraging the superpixel maps, which can automatically comprise local and global contextual information, respectively. Afterward, an ensemble deep kernel extreme learning machine (EDKELM) is presented to investigate the deep-level characteristics in the SP and ANSP. Finally, the category of each pixel is accurately determined by the decision fusion and weighted output layer fusion strategy. Experimental results on four real-world HSI data sets demonstrate that the proposed frameworks outperform some classic and state-of-the-art methods with high computational efficiency, which can be employed to serve real-time applications. Numéro de notice : A2021-426 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1109/TGRS.2020.3022029 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97782
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5114 - 5130[article]