Détail de l'auteur
Auteur Pasquale Lervolino |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images / Donato Amitrano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : Semantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images Type de document : Article/Communication Auteurs : Donato Amitrano, Auteur ; Raffaella Guida, Auteur ; Pasquale Lervolino, Auteur Année de publication : 2021 Article en page(s) : pp 5494 - 5514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] image RVB
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] segmentation d'image
[Termes IGN] seuillage d'image
[Termes IGN] texture d'imageRésumé : (auteur) Change detection is one of the most addressed topics in the remote sensing community. When performed on synthetic aperture radar images, the most critical issues are as follows: 1) the labeling of the identified changing patterns and 2) the scarce robustness of classic pixel-based approaches based on threshold segmentation of an appropriate change index, which tend to fail when multiple changes are present in the study area. In this work, a new methodology for unsupervised change detection in vegetation canopy is presented. It overcomes these limitations by exploiting multitemporal geographical object-based image analysis with the aim to make the intrinsic semantic of data emerge and direct the processing toward the identification of precise classes of changes through dictionary-based preclassification and fuzzy combination of class-specific information layers. The proposed methodology has been tested in ten different experiments covering agriculture and clear-cut deforestation applications. The results, validated against literature methods, highlighted the superiority of the proposed approach, which was quantitatively assessed in terms of standard classification quality parameters. On agriculture experiments, it allowed for an average increase in the detection accuracy of about 11% with respect to the best performing literature method, with an increment of the false alarm rate in the order of 0.5%. In case of deforestation, the registered detection accuracy was comparable to that achieved by the literature, while the most significant benefit was the reduction, of more than one-third, of the number of detected false deforestation patterns. Overall, the main characteristics of the proposed architecture are the robustness and the lack of any supervision, which makes it very well-suited for operational scenarios. Numéro de notice : A2021-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3029841 Date de publication en ligne : 22/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3029841 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97978
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5494 - 5514[article]