Détail de l'auteur
Auteur Xiao Huang |
Documents disponibles écrits par cet auteur (7)



Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
![]()
[article]
Titre : Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference Type de document : Article/Communication Auteurs : Xiao Huang, Auteur ; Yang Xu, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1939 - 1961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] disparité
[Termes IGN] distribution spatiale
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] inférence statistique
[Termes IGN] logement
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode robusteRésumé : (auteur) In this study, we aim to reveal hidden patterns and confounders associated with policy implementation and adherence by investigating the home-dwelling stages from a data-driven perspective via Bayesian inference with weakly informative priors and by examining how home-dwelling stages in the USA varied geographically, using fine-grained, spatial-explicit home-dwelling time records from a multi-scale perspective. At the U.S. national level, two changepoints are identified, with the former corresponding to March 22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter corresponding to May 17, 2020. Inspections at U.S. state and county level reveal notable spatial disparity in home-dwelling stage-related variables. A pilot study in the Atlanta Metropolitan area at the Census Tract level reveals that the self-quarantine duration and increase in home-dwelling time are strongly correlated with the median household income, echoing existing efforts that document the economic inequity exposed by the U.S. stay-at-home orders. To our best knowledge, our work marks a pioneering effort to explore multi-scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner. Numéro de notice : A2022-533 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1111/tgis.12918 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1111/tgis.12918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101081
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1939 - 1961[article]Spatiotemporal temperature fusion based on a deep convolutional network / Xuehan Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)
![]()
[article]
Titre : Spatiotemporal temperature fusion based on a deep convolutional network Type de document : Article/Communication Auteurs : Xuehan Wang, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; Deren Li, Auteur Année de publication : 2022 Article en page(s) : pp 93 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données multisource
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] température de surfaceRésumé : (Auteur) High-spatiotemporal-resolution land surface temperature (LST) images are essential in various fields of study. However, due to technical constraints, sensing systems have difficulty in providing LSTs with both high spatial and high temporal resolution. In this study, we propose a multi-scale spatiotemporal temperature-image fusion network (MSTTIFN) to generate high-spatial-resolution LST products. The MSTTIFN builds nonlinear mappings between the input Moderate Resolution Imaging Spectroradiometer (MODIS) LSTs and the out- put Landsat LSTs at the target date with two pairs of references and therefore enhances the resolution of time-series LSTs. We conduct experiments on the actual Landsat and MODIS data in two study areas (Beijing and Shandong) and compare our proposed MSTTIFN with four competing methods: the Spatial and Temporal Adaptive Reflectance Fusion Model, the Flexible Spatiotemporal Data Fusion Model, a two-stream convolutional neural network (StfNet), and a deep learning-based spatiotemporal temperature-fusion network. Results reveal that the MSTTIFN achieves the best and most stable performance. Numéro de notice : A2022-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00023R2 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.14358/PERS.21-00023R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99724
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 2 (February 2022) . - pp 93 - 101[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022021 SL Revue Centre de documentation Revues en salle Disponible Improving urban land cover mapping with the fusion of optical and SAR data based on feature selection strategy / Qing Ding in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
![]()
[article]
Titre : Improving urban land cover mapping with the fusion of optical and SAR data based on feature selection strategy Type de document : Article/Communication Auteurs : Qing Ding, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 17 - 28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] fusion de données multisource
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] précision de la classificationRésumé : (Auteur) Taking the Futian District as the research area, this study proposed an effective urban land cover mapping framework fusing optical and SAR data. To simplify the model complexity and improve the mapping results, various feature selection methods were compared and evaluated. The results showed that feature selection can eliminate irrelevant features, increase the mean correlation between features slightly, and improve the classification accuracy and computational efficiency significantly. The recursive feature elimination-support vector machine (RFE-SVM) model obtained the best results, with an overall accuracy of 89.17% and a kappa coefficient of 0.8695, respectively. In addition, this study proved that the fusion of optical and SAR data can effectively improve mapping and reduce the confusion between different land covers. The novelty of this study is with the insight into the merits of multi-source data fusion and feature selection in the land cover mapping process over complex urban environments, and to evaluate the performance differences between different feature selection methods. Numéro de notice : A2022-061 Affiliation des auteurs : non IGN Thématique : URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00030R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00030R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99703
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 17 - 28[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
![]()
[article]
Titre : Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images Type de document : Article/Communication Auteurs : Xiao Li, Auteur ; Huan Ning, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 32 - 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carrefour
[Termes IGN] cartographie urbaine
[Termes IGN] couche thématique
[Termes IGN] exploration d'images
[Termes IGN] feu de circulation
[Termes IGN] image Streetview
[Termes IGN] Mapillary
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] signalisation routièreRésumé : (auteur) Auditing and mapping traffic infrastructure is a crucial task in urban management. For example, signalized intersections play an essential role in transportation management; however, effectively identifying these intersections remains unsolved. Traditionally, signalized intersection data are manually collected through field audits or checking street view images (SVIs), which is time-consuming and labor-intensive. This study proposes an effective protocol to identify signalized intersections using road networks and SVIs. First, we propose a six-step geoprocessing model to generate an intersection feature layer from road networks. Second, we utilize up to three nearest SVIs to capture streetscapes at each intersection. Then, a deep learning-based image segmentation model is adopted to recognize traffic light-related pixels from each SVI. Last, we design a post-processing step to generate new features characterizing SVIs’ segmentation results at each intersection and build a decision tree model to determine the traffic control type. Results demonstrate that the proposed protocol can effectively identify signalized intersections with an overall accuracy of 97.05%. It also proves the effectiveness of SVIs for auditing urban infrastructures. This study can directly benefit transportation agencies by providing a ready-to-use smart audit and mapping solution for large-scale identification and mapping of signalized intersections. Numéro de notice : A2022-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/15230406.2021.1992299 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.1080/15230406.2021.1992299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99148
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 32 - 49[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 SL Revue Centre de documentation Revues en salle Disponible An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images / Sihang Zhang in Geo-spatial Information Science, vol 24 n° 4 (October 2021)
![]()
[article]
Titre : An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images Type de document : Article/Communication Auteurs : Sihang Zhang, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 654 - 665 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] image optique
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Due to the bird’s eye view of remote sensing sensors, the orientational information of an object is a key factor that has to be considered in object detection. To obtain rotating bounding boxes, existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers, leading to increased computational demand and reduced detection speeds. In this study, we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images. For the internal optimization, we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks. The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer. For the external optimization, we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes. Experimental results on the DOTA and HRSC2016 benchmark datasets show that our proposed method outperforms selected methods. Numéro de notice : A2021-129 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2021.1972772 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10095020.2021.1972772 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99355
in Geo-spatial Information Science > vol 24 n° 4 (October 2021) . - pp 654 - 665[article]Improving urban land cover classification with combined use of Sentinel-2 and Sentinel-1 imagery / Bin Hu in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
PermalinkSimulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)
Permalink