Détail de l'auteur
Auteur Xingke Zhao |
Documents disponibles écrits par cet auteur (1)



ComNet: combinational neural network for object detection in UAV-borne thermal images / Minglei Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
![]()
[article]
Titre : ComNet: combinational neural network for object detection in UAV-borne thermal images Type de document : Article/Communication Auteurs : Minglei Li, Auteur ; Xingke Zhao, Auteur ; Jiasong Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6662 - 6673 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] image captée par drone
[Termes IGN] image thermique
[Termes IGN] piéton
[Termes IGN] saillance
[Termes IGN] véhiculeRésumé : (auteur) We propose a deep learning-based method for object detection in UAV-borne thermal images that have the capability of observing scenes in both day and night. Compared with visible images, thermal images have lower requirements for illumination conditions, but they typically have blurred edges and low contrast. Using a boundary-aware salient object detection network, we extract the saliency maps of the thermal images to improve the distinguishability. Thermal images are augmented with the corresponding saliency maps through channel replacement and pixel-level weighted fusion methods. Considering the limited computing power of UAV platforms, a lightweight combinational neural network ComNet is used as the core object detection method. The YOLOv3 model trained on the original images is used as a benchmark and compared with the proposed method. In the experiments, we analyze the detection performances of the ComNet models with different image fusion schemes. The experimental results show that the average precisions (APs) for pedestrian and vehicle detection have been improved by 2%~5% compared with the benchmark without saliency map fusion and MobileNetv2. The detection speed is increased by over 50%, while the model size is reduced by 58%. The results demonstrate that the proposed method provides a compromise model, which has application potential in UAV-borne detection tasks. Numéro de notice : A2021-632 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3029945 Date de publication en ligne : 21/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3029945 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98288
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6662 - 6673[article]