Détail de l'auteur
Auteur Hamza Ben Addou |
Documents disponibles écrits par cet auteur (2)



Utilisation de l’apprentissage profond dans la modélisation 3D urbaine : partie 2, post-traitement et évaluation / Hamza Ben Addou in Géomatique expert, n° 136 (novembre - décembre 2021)
[article]
Titre : Utilisation de l’apprentissage profond dans la modélisation 3D urbaine : partie 2, post-traitement et évaluation Type de document : Article/Communication Auteurs : Hamza Ben Addou, Auteur Année de publication : 2021 Article en page(s) : pp 42 -47 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage profond
[Termes IGN] CityGML
[Termes IGN] classification automatique d'objets
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] emprise au sol
[Termes IGN] maquette numérique
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique du bâti
[Termes IGN] modélisation 3D
[Termes IGN] niveau de détail
[Termes IGN] orthoimage
[Termes IGN] primitive géométrique
[Termes IGN] toitRésumé : (Auteur) Post-traitement des données issues de l’algorithme d’apprentissage profond et modélisation 3D urbaine automatique Numéro de notice : A2021-919 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/11/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99335
in Géomatique expert > n° 136 (novembre - décembre 2021) . - pp 42 -47[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité IFN-001-P002286 PER Revue Nogent-sur-Vernisson Salle périodiques Exclu du prêt Utilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] / Hamza Ben Addou in Géomatique expert, n° 135 (septembre 2021)
[article]
Titre : Utilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] Type de document : Article/Communication Auteurs : Hamza Ben Addou, Auteur Année de publication : 2021 Article en page(s) : pp 11 - 20 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] emprise au sol
[Termes IGN] fusion de données multisource
[Termes IGN] image aérienne
[Termes IGN] information sémantique
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) Partie 1 : Mise en place d’un processus de détection automatique des emprises de bâtiments par apprentissage profond Numéro de notice : A2021-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/09/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98414
in Géomatique expert > n° 135 (septembre 2021) . - pp 11 - 20[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité IFN-001-P002273 PER Revue Nogent-sur-Vernisson Salle périodiques Exclu du prêt