Détail de l'auteur
Auteur Zhenfeng Shao |
Documents disponibles écrits par cet auteur (7)



The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
![]()
[article]
Titre : The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Zhenfeng Shao, Auteur ; Akib Javed, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] carte thématique
[Termes IGN] classification semi-dirigée
[Termes IGN] détection de changement
[Termes IGN] données vectorielles
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle dynamique
[Termes IGN] occupation du sol
[Termes IGN] Pakistan
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization has become an immense problem in Lahore city, causing various socio-economic and environmental problems. Therefore, it is noteworthy to monitor land use/land cover (LULC) change detection and future LULC patterns in Lahore. The present study focuses on evaluating the current extent and modeling the future LULC developments in Lahore, Pakistan. Therefore, the semi-automatic classification model has been applied for the classification of Landsat satellite imagery from 2000 to 2020. And the Modules of Land Use Change Evaluation (MOLUSCE) cellular automata (CA-ANN) model was implemented to simulate future land use trends for the years 2030 and 2040. This study project made use of Landsat, Shuttle Radar Topography Mission Digital Elevation Model, and vector data. The research methodology includes three main steps: (i) semi-automatic land use classification using Landsat data from 2000 to 2020; (ii) future land use prediction using the CA-ANN (MOLUSCE) model; and (iii) monitoring change detection and interpretation of results. The research findings indicated that there was a rise in urban areas and a decline in vegetation, barren land, and water bodies for both the past and future projections. The results also revealed that about 27.41% of the urban area has been increased from 2000 to 2020 with a decrease of 42.13% in vegetation, 2.3% in barren land, and 6.51% in water bodies, respectively. The urban area is also expected to grow by 23.15% between 2020 and 2040, whereas vegetation, barren land, and water bodies will all decline by 28.05%, 1.8%, and 12.31%, respectively. Results can also aid in the long-term, sustainable planning of the city. It was also observed that the majority of the city's urban area expansion was found to have occurred in the city's eastern and southern regions. This research also suggests that decision-makers and municipal Government should reconsider city expansion strategies. Moreover, the future city master plans of 2050 must emphasize the relevance of rooftop urban planting and natural resource conservation. Numéro de notice : A2023-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.14358/PERS.22-00102R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.22-00102R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102357
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp 47 - 55[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution / Zhenfeng Shao in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
![]()
[article]
Titre : Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution Type de document : Article/Communication Auteurs : Zhenfeng Shao, Auteur ; Yuan Zhang, Auteur ; Cheng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 550 - 567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] image Gaofen
[Termes IGN] image Landsat-OLI
[Termes IGN] scène urbaine
[Termes IGN] surface imperméableRésumé : (auteur) Impervious surface mapping is essential for urban environmental studies. Spectral Mixture Analysis (SMA) and its extensions are widely employed in impervious surface estimation from medium-resolution images. For SMA, inappropriate endmember combinations and inadequate endmember classes have been recognized as the primary reasons for estimation errors. Meanwhile, the spectral-only SMA, without considering urban spatial distribution, fails to consider spectral variability in an adequate manner. The lack of endmember class diversity and their spatial variations lead to over/underestimation. To mitigate these issues, this study integrates a hierarchical strategy and spatially varied endmember spectra to map impervious surface abundance, taking Wuhan and Wuzhou as two study areas. Specifically, the piecewise convex multiple-model endmember detection algorithm is applied to automatically hierarchize images into three regions, and distinct endmember combinations are independently developed in each region. Then, spatially varied endmember spectra are synthesized through neighboring spectra using the distance-based weight. Comparative analysis indicates that the proposed method achieves better performance than Hierarchical SMA and Fixed Four-endmembers SMA in terms of MAE, SE, and RMSE. Further analysis suggests that the hierarchical strategy can expand endmember class types and considerably improve the performance for the study areas in general, specifically in less developed areas. Moreover, we find that spatially varied endmember spectra facilitate the reduction of heterogeneous surface material variations and achieve the improved performance in developed areas. Numéro de notice : A2022-890 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2028535 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2028535 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102237
in Geo-spatial Information Science > vol 25 n° 4 (December 2022) . - pp 550 - 567[article]Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lin Zhou in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
![]()
[article]
Titre : Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lin Zhou, Auteur ; Zhenfeng Shao, Auteur ; Shugen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 383 - 398 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] carte climatique
[Termes IGN] Chine
[Termes IGN] filtre de déchatoiement
[Termes IGN] ilot thermique urbain
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] température de l'airRésumé : (auteur) As a newly developed classification system, the LCZ scheme provides a research framework for Urban Heat Island (UHI) studies and standardizes the worldwide urban temperature observations. With the growing popularity of deep learning, deep learning-based approaches have shown great potential in LCZ mapping. Three major cities in China are selected as the study areas. In this study, we design a deep convolutional neural network architecture, named Residual combined Squeeze-and-Excitation and Non-local Network (RSNNet), that consists of the Squeeze-and-Excitation (SE) block and non-local block to classify LCZ using freely available Sentinel-1 SAR and Sentinel-2 multispectral imagery. Overall Accuracy (OA) of 0.9202, 0.9524 and 0.9004 for three selected cities are obtained by applying RSNNet and training data of individual city, and OA of 0.9328 is obtained by training RSNNet with data from all three cities. RSNNet outperforms other popular Convolutional Neural Networks (CNNs) in terms of LCZ mapping accuracy. We further design a series of experiments to investigate the effect of different characteristics of Sentinel-1 SAR data on the performance of RSNNet in LCZ mapping. The results suggest that the combination of SAR and multispectral data can improve the accuracy of LCZ classification. The proposed RSNNet achieves an OA of 0.9425 when integrating the three decomposed components with Sentinel-2 multispectral images, 2.44% higher than using Sentinel-2 images alone. Numéro de notice : A2022-723 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2030654 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2030654 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101666
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 383 - 398[article]Spatiotemporal temperature fusion based on a deep convolutional network / Xuehan Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)
![]()
[article]
Titre : Spatiotemporal temperature fusion based on a deep convolutional network Type de document : Article/Communication Auteurs : Xuehan Wang, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; Deren Li, Auteur Année de publication : 2022 Article en page(s) : pp 93 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données multisource
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] température de surfaceRésumé : (Auteur) High-spatiotemporal-resolution land surface temperature (LST) images are essential in various fields of study. However, due to technical constraints, sensing systems have difficulty in providing LSTs with both high spatial and high temporal resolution. In this study, we propose a multi-scale spatiotemporal temperature-image fusion network (MSTTIFN) to generate high-spatial-resolution LST products. The MSTTIFN builds nonlinear mappings between the input Moderate Resolution Imaging Spectroradiometer (MODIS) LSTs and the out- put Landsat LSTs at the target date with two pairs of references and therefore enhances the resolution of time-series LSTs. We conduct experiments on the actual Landsat and MODIS data in two study areas (Beijing and Shandong) and compare our proposed MSTTIFN with four competing methods: the Spatial and Temporal Adaptive Reflectance Fusion Model, the Flexible Spatiotemporal Data Fusion Model, a two-stream convolutional neural network (StfNet), and a deep learning-based spatiotemporal temperature-fusion network. Results reveal that the MSTTIFN achieves the best and most stable performance. Numéro de notice : A2022-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00023R2 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.14358/PERS.21-00023R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99724
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 2 (February 2022) . - pp 93 - 101[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022021 SL Revue Centre de documentation Revues en salle Disponible Improving urban land cover mapping with the fusion of optical and SAR data based on feature selection strategy / Qing Ding in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
![]()
[article]
Titre : Improving urban land cover mapping with the fusion of optical and SAR data based on feature selection strategy Type de document : Article/Communication Auteurs : Qing Ding, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 17 - 28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] fusion de données multisource
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] précision de la classificationRésumé : (Auteur) Taking the Futian District as the research area, this study proposed an effective urban land cover mapping framework fusing optical and SAR data. To simplify the model complexity and improve the mapping results, various feature selection methods were compared and evaluated. The results showed that feature selection can eliminate irrelevant features, increase the mean correlation between features slightly, and improve the classification accuracy and computational efficiency significantly. The recursive feature elimination-support vector machine (RFE-SVM) model obtained the best results, with an overall accuracy of 89.17% and a kappa coefficient of 0.8695, respectively. In addition, this study proved that the fusion of optical and SAR data can effectively improve mapping and reduce the confusion between different land covers. The novelty of this study is with the insight into the merits of multi-source data fusion and feature selection in the land cover mapping process over complex urban environments, and to evaluate the performance differences between different feature selection methods. Numéro de notice : A2022-061 Affiliation des auteurs : non IGN Thématique : URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00030R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00030R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99703
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 17 - 28[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images / Sihang Zhang in Geo-spatial Information Science, vol 24 n° 4 (October 2021)
PermalinkSpatio-temporal-spectral observation model for urban remote sensing / Zhenfeng Shao in Geo-spatial Information Science, vol 24 n° 3 (July 2021)
Permalink