Détail de l'auteur
Auteur Endre H. Hansen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Large-area inventory of species composition using airborne laser scanning and hyperspectral data / Hans Ole Ørka in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Large-area inventory of species composition using airborne laser scanning and hyperspectral data Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Endre H. Hansen, Auteur ; Michele Dalponte, Auteur ; Terje Gobakken, Auteur ; Erik Naesset, Auteur Année de publication : 2021 Article en page(s) : n° 10244 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] composition d'un peuplement forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index. Numéro de notice : A2021-736 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10244 En ligne : https://doi.org/10.14214/sf.10244 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98695
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10244[article]Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes / Hans Ole Ørka in Forestry, an international journal of forest research, vol 91 n° 2 (April 2018)
[article]
Titre : Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Ole Martin Bollandsås, Auteur ; Endre H. Hansen, Auteur ; Erik Naesset, Auteur ; Terje Gobakken, Auteur Année de publication : 2018 Article en page(s) : pp 225 - 237 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de variance
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] Norvège
[Termes IGN] pente
[Termes IGN] régression non linéaire
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Wall-to-wall forest management inventories with the area-based method using airborne laser scanner (ALS) data are operational in many countries. With this method, empirical relationships are established between ALS metrics and ground reference observations of forest attributes, and wall-to-wall predictions can be made over large areas. However, the prediction errors may be influenced by terrain slope and aspect because the properties of the ALS point cloud are dependent on these factors. Two datasets covering wide ranges of terrain slope and aspect, collected in the western part of Norway, were analysed. The first dataset represented sample plots from an ordinary operational forest management inventory and the second dataset were collected as an experimental dataset where clusters of sample plots were distributed on slopes with different inclinations. Six forest attributes were predicted using non-linear regression and the prediction errors were analysed using univariate- and multivariate analysis of variance. The results showed that slope and aspect affected the prediction errors, but that the effects were small in magnitude. Thus, the current study concludes that terrain effects seem to be negligible in operational forest inventories. Numéro de notice : A2018-652 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpx058 Date de publication en ligne : 30/01/2018 En ligne : https://doi.org/10.1093/forestry/cpx058 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93238
in Forestry, an international journal of forest research > vol 91 n° 2 (April 2018) . - pp 225 - 237[article]