Détail de l'auteur
Auteur Shi Shen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A topic model based framework for identifying the distribution of demand for relief supplies using social media data / Ting Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A topic model based framework for identifying the distribution of demand for relief supplies using social media data Type de document : Article/Communication Auteurs : Ting Zhang, Auteur ; Shi Shen, Auteur ; Changxiu Cheng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2216 - 2237 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] cartographie thématique
[Termes IGN] catastrophe naturelle
[Termes IGN] cyclone
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Pacifique ouest
[Termes IGN] Philippines
[Termes IGN] répertoire toponymique
[Termes IGN] secours d'urgenceRésumé : (auteur) Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations. Numéro de notice : A2021-757 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1869746 Date de publication en ligne : 07/01/2021 En ligne : https://doi.org/10.1080/13658816.2020.1869746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98772
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2216 - 2237[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible