Détail de l'auteur
Auteur Fan Deng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images / Zhenjiang Wu in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images Type de document : Article/Communication Auteurs : Zhenjiang Wu, Auteur ; Jiahua Zhang, Auteur ; Fan Deng, Auteur Année de publication : 2021 Article en page(s) : n° 4067 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Chine
[Termes IGN] classification par algorithme génétique
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] prairie
[Termes IGN] précision de la classification
[Termes IGN] superpixel
[Termes IGN] texture d'imageRésumé : (auteur) Grasslands are one of the most important terrestrial ecosystems on the planet and have significant economic and ecological value. Accurate and rapid discrimination of grassland communities is critical to the conservation and utilization of grassland resources. Previous studies that explored grassland communities were mainly based on field surveys or airborne hyperspectral and high-resolution imagery. Limited by workload and cost, these methods are typically suitable for small areas. Spaceborne mid-resolution RS images (e.g., Sentinel, Landsat) have been widely used for large-scale vegetation observations owing to their large swath width. However, there still keep challenges in accurately distinguishing between different grassland communities using these images because of the strong spectral similarity of different communities and the suboptimal performance of models used for classification. To address this issue, this paper proposed a superpixel-based grassland community classification method using Genetic Programming (GP)-optimized classification model with Sentinel-2 multispectral bands, their derived vegetation indices (VIs) and textural features, and Sentinel-1 Synthetic Aperture Radar (SAR) bands and the derived textural features. The proposed method was evaluated in the Siziwang grassland of China. Our results showed that the addition of VIs and textures, as well as the use of GP-optimized classification models, can significantly contribute to distinguishing grassland communities, and the proposed approach classified the seven communities in Siziwang grassland with an overall accuracy of 84.21% and a kappa coefficient of 0.81. We concluded that the classification method proposed in this paper is capable of distinguishing grassland communities with high accuracy at a regional scale. Numéro de notice : A2021-805 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204067 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.3390/rs13204067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98862
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4067[article]