Détail de l'auteur
Auteur Qingzhi Zhao |
Documents disponibles écrits par cet auteur (1)



Hourly rainfall forecast model using supervised learning algorithm / Qingzhi Zhao in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
![]()
[article]
Titre : Hourly rainfall forecast model using supervised learning algorithm Type de document : Article/Communication Auteurs : Qingzhi Zhao, Auteur ; Yang Liu, Auteur ; Wanqiang Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4100509 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] autocorrélation
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données GNSS
[Termes IGN] heure
[Termes IGN] modèle de simulation
[Termes IGN] modèle météorologique
[Termes IGN] précipitation
[Termes IGN] série temporelle
[Termes IGN] station GNSS
[Termes IGN] Taïwan
[Termes IGN] vapeur d'eauRésumé : (auteur) Previous studies on short-term rainfall forecast using precipitable water vapor (PWV) and meteorological parameters mainly focus on rain occurrence, while the rainfall forecast is rarely investigated. Therefore, an hourly rainfall forecast (HRF) model based on a supervised learning algorithm is proposed in this study to predict rainfall with high accuracy and time resolution. Hourly PWV derived from Global Navigation Satellite System (GNSS) and temperature data are used as input parameters of the HRF model, and a support vector machine is introduced to train the proposed model. In addition, this model also considers the time autocorrelation of rainfall in the previous epoch. Hourly PWV data of 21 GNSS stations and collocated meteorological parameters (temperature and rainfall) for five years in Taiwan Province are selected to validate the proposed model. Internal and external validation experiments have been performed under the cases of slight, moderate, and heavy rainfall. Average root-mean-square error (RMSE) and relative RMSE of the proposed HRF model are 1.36/1.39 mm/h and 1.00/0.67, respectively. In addition, the proposed HRF model is compared with the similar works in previous studies. Compared results reveal the satisfactory performance and superiority of the proposed HRF model in terms of time resolution and forecast accuracy. Numéro de notice : A2022-024 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3054582 Date de publication en ligne : 09/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3054582 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99253
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4100509[article]