Détail de l'auteur
Auteur Jonathan Fabrizio |
Documents disponibles écrits par cet auteur (1)



Titre : Introducing the boundary-aware loss for deep image segmentation Type de document : Article/Communication Auteurs : Minh On Vu Ngoc, Auteur ; Yizi Chen, Auteur ; Nicolas Boutry, Auteur ; Joseph Chazalon, Auteur ; Edwin Carlinet, Auteur ; Jonathan Fabrizio, Auteur ; Clément Mallet , Auteur ; Thierry Géraud, Auteur
Editeur : The British Machine Vision Association Press (BMVA) Année de publication : 2021 Projets : SODUCO / Perret, Julien Conférence : BMVC 2021, 32nd British Machine Vision Conference 22/11/2021 25/11/2021 online Royaume-Uni OA Proceedings Importance : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] segmentation d'imageRésumé : (auteur) Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to 15% better scores of VOI and 5% better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL Numéro de notice : C2021-054 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans En ligne : https://www.bmvc2021-virtualconference.com/assets/papers/1546.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99411