Détail de l'auteur
Auteur Diego Rodríguez de Prado |
Documents disponibles écrits par cet auteur (3)



Can mixed forests sequester more CO2 than pure forests in future climate scenarios? A case study of Pinus sylvestris combinations in Spain / Diego Rodríguez de Prado in European Journal of Forest Research, vol 142 n° 1 (February 2023)
![]()
[article]
Titre : Can mixed forests sequester more CO2 than pure forests in future climate scenarios? A case study of Pinus sylvestris combinations in Spain Type de document : Article/Communication Auteurs : Diego Rodríguez de Prado, Auteur ; Aitor Vazquez Veloso, Auteur ; Yun Fan Quian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 91 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Espagne
[Termes IGN] Fagus sylvatica
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement mélangé
[Termes IGN] Pinus nigra
[Termes IGN] Pinus pinaster
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] Quercus pyrenaica
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Adapting forests to climate change is a critical issue for forest management. It requires an understanding of climate effects on forest systems and the ability to forecast how these effects may change over time. We used Spanish Second National Forest Inventory data and the SIMANFOR platform to simulate the evolution of CO2 stock (CO2 Mg · ha−1) and accumulation rates (CO2 Mg · ha−1 · year−1) for the 2000–2100 period in pure and mixed stands managed under different Shared Socioeconomic Pathways (SSPs) in Spain. We hypothesized that (1) the more optimistic climate scenarios (SSP1 > > SSP5) would have higher CO2 stock and accumulation rates; (2) mixed stands would have higher CO2 stock and accumulation rates than pure stands; and (3) the behavior of both variables would vary based on forest composition (conifer–conifer vs. conifer–broadleaf). We focused on Pinus sylvestris L., and its main mixtures with Pinus nigra, Pinus pinaster, Fagus sylvatica and Quercus pyrenaica. The SSP scenarios had correlating CO2 stock values in which SSP1 > SSP2 > SSP3 > SSP5, ranging from the most optimistic (SSP1) to the most pessimistic (SSP5). Though pure stands had higher CO2 stock at the beginning, differences with regard to mixed stands were drastically reduced at the end of the simulation period. We also found an increase in the aboveground CO2 proportion compared to belowground in conifer–broadleaf mixtures, while the opposite trend occurred in conifer–conifer mixtures. Overall CO2 accumulation rates decreased significantly from the beginning to the end of the simulation period, but our results indicated that this decline would be less drastic in mixed stands than in pure ones. At the end of the simulation period, CO2 accumulation rates were higher in mixed stands than in pure stands for all mixtures, fractions (aboveground and belowground) and SSPs. Knowing the evolution of mixed forests in different climate scenarios is relevant for developing useful silvicultural guidelines in the Mediterranean region and optimizing forestry adaptation strategies. Better understanding can also inform the design of management measures for transitioning from pure stands to more resource efficient, resistant and resilient mixed stands, in efforts to reduce forest vulnerability in the face of climate change. This work highlights the importance and benefits of mixed stands in terms of CO2 accumulation, stand productivity and species diversity. Numéro de notice : A2023-138 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01507-y Date de publication en ligne : 16/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01507-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102691
in European Journal of Forest Research > vol 142 n° 1 (February 2023) . - pp 91 - 105[article]Competition and climate influence in the basal area increment models for Mediterranean mixed forests / Diego Rodríguez de Prado in Forest ecology and management, vol 506 (February-15 2022)
![]()
[article]
Titre : Competition and climate influence in the basal area increment models for Mediterranean mixed forests Type de document : Article/Communication Auteurs : Diego Rodríguez de Prado, Auteur ; José Riofrio, Auteur ; Jorge Aldea, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 119955 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] climat aride
[Termes IGN] climat méditerranéen
[Termes IGN] croissance des arbres
[Termes IGN] Espagne
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] surface terrière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Competition plays a key role controlling tree growth in mixed forests. Contrary to monocultures, quantifying species mixing influence on tree growth suppose a challenge since the presence of two or more species requires to estimate the degree of intra- and inter-specific competition among trees. Moreover, it is well known that aridity can also influence tree growth, especially in the Mediterranean Basin. In the present context of climate change, it is essential to take into account species mixing and aridity uncertainty in the design of sustainable management guidelines for Mediterranean mixed forests. To achieve that, data from Spanish National Forest Inventory was used in this study to fit new mixed-effects basal area increment (BAI) models for 29 two-species compositions in Spain. A wide range of different competition structures (intra-specific, inter-specific, size-symmetric and size-asymmetric) and aridity conditions (in terms of the De Martonne Index) were included and tested into the BAI models. Parameter estimations were obtained for all possible species, mixtures and combinations by Maximum Likelihood (ML). Models with all the coefficients being significant (p Numéro de notice : A2022-059 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119955 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99470
in Forest ecology and management > vol 506 (February-15 2022) . - n° 119955[article]New insights in the modeling and simulation of tree and stand level variables in Mediterranean mixed forests in the present context of climate change / Diego Rodríguez de Prado (2022)
![]()
Titre : New insights in the modeling and simulation of tree and stand level variables in Mediterranean mixed forests in the present context of climate change Type de document : Thèse/HDR Auteurs : Diego Rodríguez de Prado, Auteur ; Celia Herrero de Aza, Directeur de thèse ; Felipe Bravo Oviedo, Directeur de thèse Editeur : Valladolid [Espagne] : Université de Valladolid Année de publication : 2022 Importance : 168 p. Format : 21 x 30 cm Note générale : bibliographie
Doctoral dissertation, Valladolid UniversityLangues : Anglais (eng) Descripteur : [Termes IGN] allométrie
[Termes IGN] climat aride
[Termes IGN] croissance des arbres
[Termes IGN] Espagne
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière adaptative
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] Pinus nigra
[Termes IGN] Pinus pinaster
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] Quercus pyrenaica
[Vedettes matières IGN] Végétation et changement climatiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) An increase of droughts intensity and frequency episodes combined with new extreme climate events are predicted to appear in the Mediterranean Basin due to global warming. In this context, mixed forests have become a sustainable opportunity to mitigate the effects of climate change. Species mixing may lead to the provision of a greater variety of ecosystem services and products while increasing temporal stability compared to pure forests. The development of new models that explain different tree and stand level variables may be vital to better understand the structure, composition and dynamics of this type of forests. In addition, it is essential to analyze how climate may influence these variables in order to design adaptive and sustainable management guidelines for mixed forests under future climate change scenarios. In this study, we sought to advance in the modelization and simulation of different tree and stand level variables along a range of different forest and aridity conditions in Spain. To achieve that, climate-dependent models were fitted using data from the Spanish National Forest Inventory and the WorldClim databases. We focused our study on fifteen Mediterranean tree species from the Pinus, Quercus, and Fagus genus. In our first study, we analyzed how climate may potentially influence the maximum stand carrying capacity, by terms of the maximum stand carrying capacity (SDImax), for the species under study in pure stands. This variable was chosen because its importance in (1) managing density and (2) defining species mixing proportions in mixed forest stands. To do that, climate-dependent MSDR models were fitted for each species under study. 35 different climatic annual and seasonal variables (temperature, precipitation, evapotranspiration, aridity indexes) were simultaneously included into the models. In this study, climate was found to have significant influence on MSDR, and therefore on the maximum stand carrying capacity (SDImax). The best climate-dependent MSDR models indicated that climatic variables related to temperature better explained the influence of climate on MSDR. Specifically, seasonal (MXTi) and annual (MXT) maximum temperatures were the most representative climatic variables explaining changes in MSDR. Based on the selected seasonal variables, spring and summer were consistently appeared as key periods. A common trend in SDImax variation for coniferous and broadleaf species was found, with higher SDImax values negatively linked to temperature and positively linked to precipitation. This trend suggested that aridity may play a key role reducing the maximum stand 12 carrying capacity of the main Mediterranean tree species. In addition, the impact of climate on maximum stand carrying capacity was evaluated by the creation of the Q index. In general, broadleaved species presented higher values of Q indexes than coniferous species, suggesting that the maximum stand carrying capacity of the first ones would suffer more the influence of potential climate changes. Our findings highlight the importance of using specific climatic variables to better characterize how they affect MSDR. Since we saw that aridity could play a key role influencing stand level variables such as SDImax, we aimed to analyze how it may influence tree growth and tree allometry. Moreover, we aimed to analyze how species mixing effects may influence these variables on mixed forests. Thus, two more studies focused on 29 two-species Mediterranean mixtures were developed. To study the influence of aridity and species mixing on tree growth, the basal area increment within a span of five years (BAI5), was modelled based on individual tree size, stand development and other variables of site and competition. Two distance independent competition indexes were considered: total stand basal area (BA) representing size-symmetric competition, and the basal area of trees larger than the subject tree (BAL) representing size-asymmetric competition. To uncover the complex mixing effects on basal area increment at tree level, competition indexes were splitting into intraspecific and interspecific components. All possible combinations of competition structures were included and tested in the BAI models. Positive, negative or neutral mixing effects were determined by comparing the intraspecific and interspecific component of the selected models. Then, the biological interactions taking place between species were determined based on size-symmetric and sizeasymmetric competition. Finally, the influence of aridity on basal area increment was studied including the De Martonne Index into the BAI models. A common trend among mixtures was found with higher productivity in mixed than pure stands, suggesting that BAI values may increase with the increment of species diversity. Based on model parameters, a novel approach to determine potential biological interactions between species in mixed forests was also presented in this study. Competition seemed to be the most representative biological interaction in coniferconifer mixtures, since neutralism and facilitation may occur more frequently in conifer-broadleaved and broadleaved-broadleaved mixtures. Our findings also suggested that tree productivity may be significantly limited by arid conditions, excepting for Pinus halepensis and Pinus pinea [...] Note de contenu : 1- Introduction
2- Objectives
3- Data
4- Methods
5- Results
6- Discussion
ConclusionNuméro de notice : 24064 Affiliation des auteurs : non IGN Thématique : FORET Nature : Thèse étrangère Note de thèse : Thèse de Doctorat : Systemes Forestiers Durables : Valladolid : 2022 Organisme de stage : Sustainable Forest Management Research Institute (Université de Valladolid) DOI : sans En ligne : https://uvadoc.uva.es/handle/10324/55195 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102046