Détail de l'auteur
Auteur Merry Crowson |
Documents disponibles écrits par cet auteur (1)



Improving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series / Maylis Lopes in Methods in ecology and evolution, vol 11 n° 4 (April 2020)
![]()
[article]
Titre : Improving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series Type de document : Article/Communication Auteurs : Maylis Lopes, Auteur ; Pierre-Louis Frison , Auteur ; Merry Crowson, Auteur ; Eleanor Warren-Thomas, Auteur ; et al., Auteur
Année de publication : 2020 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 532 - 541 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification
[Termes IGN] fusion d'images
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Indonésie
[Termes IGN] nébulosité
[Termes IGN] série temporelle
[Termes IGN] tourbière
[Termes IGN] zone intertropicaleRésumé : (auteur) The recent availability of high spatial and temporal resolution optical and radar satellite imagery has dramatically increased opportunities for mapping land cover at fine scales. Fusion of optical and radar images has been found useful in tropical areas affected by cloud cover because of their complementarity. However, the multitemporal dimension these data now offer is often neglected because these areas are primarily characterized by relatively low levels of seasonality and because the consideration of multitemporal data requires more processing time. Hence, land cover mapping in these regions is often based on imagery acquired for a single date or on an average of multiple dates. The aim of this work is to assess the added value brought by the temporal dimension of optical and radar time series when mapping land cover in tropical environments. Specifically, we compared the accuracies of classifications based on (a) optical time series, (b) their temporal average, (c) radar time series, (d) their temporal average, (e) a combination of optical and radar time series and (f) a combination of their temporal averages for mapping land cover in Jambi province, Indonesia, using Sentinel-1 and Sentinel-2 imagery. Using the full information contained in the time series resulted in significantly higher classification accuracies than using temporal averages (+14.7% for Sentinel-1, +2.5% for Sentinel-2 and +2% combining Sentinel-1 and Sentinel-2). Overall, combining Sentinel-2 and Sentinel-1 time series provided the highest accuracies (Kappa = 88.5%). Our study demonstrates that preserving the temporal information provided by satellite image time series can significantly improve land cover classifications in tropical biodiversity hotspots, improving our capacity to monitor ecosystems of high conservation relevance such as peatlands. The proposed method is reproducible, automated and based on open-source tools satellite imagery. Numéro de notice : A2020-875 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/2041-210X.13359 Date de publication en ligne : 27/01/2020 En ligne : https://doi.org/10.1111/2041-210X.13359 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99668
in Methods in ecology and evolution > vol 11 n° 4 (April 2020) . - pp 532 - 541[article]