Détail de l'auteur
Auteur Hao Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
PPP rapid ambiguity resolution using Android GNSS raw measurements with a low-cost helical antenna / Xingxing Li in Journal of geodesy, vol 96 n° 10 (October 2022)
[article]
Titre : PPP rapid ambiguity resolution using Android GNSS raw measurements with a low-cost helical antenna Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Hao Wang, Auteur ; Xin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Androïd
[Termes IGN] antenne
[Termes IGN] données GNSS
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnement
[Termes IGN] rapport signal sur bruit
[Termes IGN] résolution d'ambiguïté
[Termes IGN] téléphone intelligentRésumé : (auteur) The release of GNSS raw measurement acquisition privileges on Google Android makes high-precision positioning on the low-cost smart devices possible. However, influenced by the inner linearly polarized antenna, the pseudorange and carrier phase noises of the smart device are much larger than those of the geodetic receiver. As a result, only meter-level positioning accuracy can be obtained based on the smart device’s original antenna. With the external survey-grade antenna enhancing, positioning accuracy of decimeter-level to centimeter-level can be obtained, but it still takes tens of minutes to converge and fix the ambiguity. However, a PPP-RTK method is proposed to achieve rapid integer ambiguity resolution (AR) with the regional atmospheric augmentation. In this contribution, an uncombined PPP-RTK model is developed using Android GNSS raw measurements with an external antenna, after carefully considering the coexistence of single- and dual-frequency signals on smart devices. A low-cost helical antenna is employed to enhance the Android GNSS data as it is capable to provide observation data of comparable quality with the survey-grade antenna and has several advantages of low weight, low-power consumption, and portability. Moreover, a series of quality control methods in the data preprocessing and ambiguity resolution are proposed for smartphone-based PPP-RTK to enhance the positioning results. To validate the proposed method, several experiments are carried out using raw measurements of Xiaomi Mi8 with an external low-cost helical antenna. The result shows that the ambiguity fixed solution can be obtained within 3 min in both static and kinematic scenarios. After the ambiguity resolution, centimeter-level positioning accuracy of (1.7, 2.1, 4.1) cm and (7.2, 4.5, 8.1) cm for the east, north, and up components can be achieved in static and kinematic scenarios, respectively. Numéro de notice : A2022-735 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01661-6 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1007/s00190-022-01661-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101706
in Journal of geodesy > vol 96 n° 10 (October 2022) . - n° 65[article]Seasonal variations of vertical crustal motion in Australia observed by joint analysis of GPS and GRACE / Hao Wang in Geomatics and Information Science of Wuhan University, vol 47 n° 2 (February 2022)
[article]
Titre : Seasonal variations of vertical crustal motion in Australia observed by joint analysis of GPS and GRACE Type de document : Article/Communication Auteurs : Hao Wang, Auteur ; Jianping Yue, Auteur ; Yunfei Xiang, Auteur Année de publication : 2022 Article en page(s) : pp 197 - 207 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de spectre singulier
[Termes IGN] Australie
[Termes IGN] déformation verticale de la croute terrestre
[Termes IGN] données GPS
[Termes IGN] données GRACE
[Termes IGN] transformation en ondelettes
[Termes IGN] variation saisonnièreRésumé : (auteur) Objectives There are obvious seasonal variations in the GPS height time series, which affect the improvement of precision and can be corrected by both mathematical modelling and geophysical mechanisms. Compared to least square fitting, singular spectrum analysis (SSA) can extract random seasonal signals effectively through signal reconstruction, which is unaffected by the assumed sinusoidal waves. According to the elastic loading theory, the gravity recovery and climate experiment (GRACE) can be used to calculate the vertical surface displacement caused by changes in terrestrial water storage. Methods This paper mainly studies the feasibility of correcting the seasonal variations in GPS heights using SSA and GRACE inversion results. The height time series of 27 GPS stations in Australia with a time span of from 5 to 10 years were chosen and combined with GRACE simultaneous inversions. Results Because the spatial resolutions of GRACE are coarse and the loading displacement is much more sensitive to near-field mass changes than far-field ones, the amplitudes of GRACE-inferred hydrological loading deformations are significantly smaller than GPS. The weighted root mean square (WRMS) are reduced at 22 stations after GRACE-inferred displacement corrections, and the correlation coefficients between deformations estimated by GPS and GRACE range from 0.12 to 0.78 with a mean value of 0.43, indicating that GPS and GRACE results have good consistency and correlation. SSA is used to extract the annual signals of vertical displacements derived from GPS and GRACE, and contribution rates of singular spectral variance of annual signals are 21.60% and 34.48%, respectively, expressing that annual signals are the main components of GRACE-inferred results. Geographical climatic conditions have a significant impact on the consistency of annual signals derived from GPS and GRACE. Compared with the arid areas in central and western Australia, the amplitude and phase of annual signals derived from GPS and GRACE are more consistent in the northern region with seasonal rainfall. Furthermore, cross wavelet transform (XWT) finds that the vertical displacement series derived from GPS and GRACE of each station have a significant resonance period of one year. The circular average phase angles of GPS/GRACE at the period closet to 1 cycle per year (cpy) outside the cone of influence range from -74.03° to 67.23°. The mean XWT-based semblances range from 0.28 to 0.99 with an average value of 0.79, showing that there is a significant positive correlation between the annual variations derived from GPS and GRACE. Conclusions Overall, GRACE-inferred deformations can explain the annual variations of GPS-derived displacements, particularly in areas with high hydrological loading. It is possible to correct the annual signals of GPS heights by GRACE inversions, but the effect is not as good as the SSA-filtered annual signals. Numéro de notice : A2022-150 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.13203/j.whugis20190282 Date de publication en ligne : 05/02/2022 En ligne : http://dx.doi.org/10.13203/j.whugis20190282 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100109
in Geomatics and Information Science of Wuhan University > vol 47 n° 2 (February 2022) . - pp 197 - 207[article]