Détail de l'auteur
Auteur Shidong Wang |
Documents disponibles écrits par cet auteur (1)



A second-order attention network for glacial lake segmentation from remotely sensed imagery / Shidong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : A second-order attention network for glacial lake segmentation from remotely sensed imagery Type de document : Article/Communication Auteurs : Shidong Wang, Auteur ; Maria V. Peppa, Auteur ; Wen Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 289 - 301 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] changement climatique
[Termes IGN] covariance
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] itération
[Termes IGN] lac glaciaire
[Termes IGN] réflectance de surface
[Termes IGN] segmentation d'image
[Termes IGN] tenseurRésumé : (auteur) Climate change is increasing the risk of glacial lake outburst floods (GLOFs) in many of the world’s most vulnerable and high mountain regions. Simultaneously, remote sensing technologies now facilitate continuous monitoring of glacial lake evolution around the globe, although accurate and reliable automated glacial lake mapping from satellite data remains challenging. In this study, a Second-order Attention Network (SoAN) is devised for the automated segmentation of lakes from satellite imagery. In particular, a novel Second-order Attention Module (SoAM) is proposed to capture the long-range spatial dependencies and establish channel attention derived from the covariance representations of local features. Furthermore, as the dimensions of the input and output tensors are identical and it simply relies on matrix calculations, the proposed SoAM can be embedded into different positions of a given architecture while maintaining similar reference speed. The designed network is implemented on Landsat-8 imagery and outputs are compared against representative deep learning models, demonstrating improved results with a Dice of 81.02% and a F2 Score of 85.17%. Numéro de notice : A2022-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.05.007 Date de publication en ligne : 29/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.05.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100814
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 289 - 301[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible