Détail de l'auteur
Auteur Abraham Noah Wu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
[article]
Titre : GANmapper: geographical data translation Type de document : Article/Communication Auteurs : Abraham Noah Wu, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : pp 1394 - 1422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] distance de Fréchet
[Termes IGN] empreinte
[Termes IGN] morphologie urbaine
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] texture d'imageRésumé : (auteur) We present a new method to create spatial data using a generative adversarial network (GAN). Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment, bypassing their traditional acquisition techniques (e.g. satellite imagery or land surveying). In the work, we employ land use data and road networks as input to generate building footprints and conduct experiments in 9 cities around the world. The method, which we implement in a tool we release openly, enables the translation of one geospatial dataset to another with high fidelity and morphological accuracy. It may be especially useful in locations missing detailed and high-resolution data and those that are mapped with uncertain or heterogeneous quality, such as much of OpenStreetMap. The quality of the results is influenced by the urban form and scale. In most cases, the experiments suggest promising performance as the method tends to truthfully indicate the locations, amount, and shape of buildings. The work has the potential to support several applications, such as energy, climate, and urban morphology studies in areas previously lacking required data or inpainting geospatial data in regions with incomplete data. Numéro de notice : A2022-493 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2041643 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2041643 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100975
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1394 - 1422[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible