Détail de l'auteur
Auteur Tamer Fath-Allah |
Documents disponibles écrits par cet auteur (2)



Detection of GNSS no-line of sight signals using LiDAR sensors for intelligent transportation systems / Tarek Hassan in Survey review, vol 54 n° 385 (July 2022)
![]()
[article]
Titre : Detection of GNSS no-line of sight signals using LiDAR sensors for intelligent transportation systems Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 301 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] détection du signal
[Termes IGN] données lidar
[Termes IGN] positionnement ponctuel précis
[Termes IGN] semis de points
[Termes IGN] signal GNSS
[Termes IGN] système de transport intelligent
[Termes IGN] traitement de données GNSSRésumé : (auteur) The reliability and robustness of positioning systems in urban and suburban environments are intrinsic. This is obvious following the continuous increase of Intelligent Transportation Systems (ITS) applications in such challenging environments. Global Navigation Satellite Systems (GNSS) represent the primary positioning technique used for navigation purposes in these applications, which can be satisfying in open-sky areas. However, GNSS cannot provide the same level of navigation performance in urban environments. One of the main reasons for this is the No-Line of Sight (NLOS) signals. In this study, the integration of GNSS and Light Detection and Ranging (LiDAR) sensors is exploited, and a new algorithm is proposed for the detection of NLOS signals. Real field data are used to test and validate the proposed strategy and algorithm. Phase-smoothed code observations are employed to evaluate the accuracy improvement after excluding the NLOS observations. The results show that the horizontal direction's positional accuracy can be improved significantly after applying the proposed algorithm. This improvement reaches 10.403 m with a mean value of 2.162 m (62.2% improvement) over all epochs with detected NLOS signals. After analysing this improvement in the Cross-Track (CT) and Along-Track (AT) directions, it is found that the accuracy improvement reaches 8.641 m with a mean value of 1.699 m in the CT direction and 6.879 m with a mean value of 1.303 m in the AT direction. Numéro de notice : A2022-535 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1937458 Date de publication en ligne : 10/06/2021 En ligne : https://doi.org/10.1080/00396265.2021.1937458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101091
in Survey review > vol 54 n° 385 (July 2022) . - pp 301 - 309[article]Integration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
![]()
[article]
Titre : Integration of GNSS observations with volunteered geographic information for improved navigation performance Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 265 - 277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GNSS
[Termes IGN] données localisées des bénévoles
[Termes IGN] Google Earth
[Termes IGN] hauteur du bâti
[Termes IGN] modélisation 3D
[Termes IGN] OpenStreetMap
[Termes IGN] positionnement par GNSS
[Termes IGN] signal GNSS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) Pedestrian and vehicular navigation relies mainly on Global Navigation Satellite System (GNSS). Even if different navigation systems are integrated, GNSS positioning remains the core of any navigation process as it is the only system capable of providing independent solutions. However, in harsh environments, especially urban ones, GNSS signals are confronted by many obstructions causing the satellite signals to reach the receivers through reflected paths. These No-Line of Sight (NLOS) signals can affect the positioning accuracy significantly. This contribution proposes a new algorithm to detect and exclude these NLOS signals using 3D building models constructed from Volunteered Geographic Information (VGI). OpenStreetMap (OSM) and Google Earth (GE) data are combined to build the 3D models incorporated with GNSS signals in the algorithm. Real field data are used for testing and validation of the presented algorithm and strategy. The accuracy improvement, after exclusion of the NLOS signals, is evaluated employing phase-smoothed code observations. The results show that applying the proposed algorithm can improve the horizontal positioning accuracy remarkably. This improvement reaches 10.72 m, and the Root Mean Square Error (RMSE) drops by 1.64 m (46 % improvement) throughout the epochs with detected NLOS satellites. In addition, the improvement is analyzed in the Along-Track (AT) and Cross-Track (CT) directions. It reaches 6.89 m in the AT direction with a drop of 1.076 m in the RMSE value, while it reaches 8.64 m with a drop of 1.239 m in the RMSE value in the CT direction. Numéro de notice : A2022-496 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0063 Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1515/jag-2021-0063 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100986
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 265 - 277[article]