Détail de l'auteur
Auteur Yuean Qiu |
Documents disponibles écrits par cet auteur (1)



The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)
![]()
[article]
Titre : The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation Type de document : Article/Communication Auteurs : Shuaijun Liu, Auteur ; Junxiong Zhou, Auteur ; Yuean Qiu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] autocorrélation
[Termes IGN] bande spectrale
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance de surface
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression multipleRésumé : (auteur) Over the past decade, spatiotemporal fusion has become an indispensable tool for monitoring land surface dynamics due to its promising ability to produce surface reflectance products with both high spatial and temporal resolutions. However, existing fusion methods usually generate multispectral band products by predicting each spectral band separately, so the useful information of spectral autocorrelation within the spectrum has been ignored and waits to be exploited. To address this issue, we propose a novel spatiotemporal fusion method, the spatiotemporal Fusion Incorrporting Spectral autocorrelaTion (FIRST) model, to fully utilize the multiple spectral bands of surface reflectance products. Compared with other fusion methods, the model has three distinct advantages: (1) it utilizes spectral autocorrelation in a many-to-many regression framework that simultaneously inputs and predicts multispectral bands without the collinearity effect; (2) it maintains high fusion accuracy when the spatiotemporal variation is large with acceptable computational efficiency; and (3) it can produce robust results even with input images contaminated by haze and thin clouds. We tested the FIRST model at several experimental sites and compared it with four typical methods, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal DAta Fusion (FSDAF) model, the regression model Fitting, spatial Filtering and residual Compensation (Fit-FC) model and the enhanced STARFM (ESTARFM). The results demonstrate that FIRST yields better overall performance for its simple and effective technical principles. FIRST is thus expected to provide high-quality remotely sensed data with high spatial resolution and frequent observations for various applications. Numéro de notice : A2022-554 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113111 Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113111 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101166
in Remote sensing of environment > vol 279 (September-15 2022) . - n° 113111[article]