Détail de l'auteur
Auteur Akiko Elders |
Documents disponibles écrits par cet auteur (1)



Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)
![]()
[article]
Titre : Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 Type de document : Article/Communication Auteurs : Akiko Elders, Auteur ; Mark Carroll, Auteur ; Christopher S.R. Neigh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100820 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Burkina Faso
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Sentinel-MSI
[Termes IGN] parcelle agricole
[Termes IGN] régression harmonique
[Termes IGN] rendement agricole
[Termes IGN] variation saisonnièreRésumé : (auteur) Remote Sensing affords the opportunity to monitor and evaluate data scarce regions where field collection efforts are costly. A particular challenge is monitoring and evaluation in regions with smallholder agricultural systems (∼1 ha) that are often subsistence focused, vulnerable to food insecurity and data scarce. Using multi-day moderate resolution Sentinel-2 and Random Forest models, this study shows that crop type and rice yields in Burkina Faso can be predicted with greater than ∼80% accuracy in the rainy season. Model optimization using varying spectral and vegetation index inputs can increase crop type and yield prediction accuracy in the dry season where denser cultivation is a challenge for the 10–20 m resolution of Sentinel-2. However, there is a trade-off between opting for very high-resolution imagery ( Numéro de notice : A2022-624 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rsase.2022.100820 Date de publication en ligne : 02/08/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101391
in Remote Sensing Applications: Society and Environment, RSASE > Vol 27 (August 2022) . - n° 100820[article]