Détail de l'auteur
Auteur Yulin Ding |
Documents disponibles écrits par cet auteur (2)



Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
![]()
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling / Han Hu in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)
![]()
[article]
Titre : Semi-supervised adversarial recognition of refined window structures for inverse procedural façade modelling Type de document : Article/Communication Auteurs : Han Hu, Auteur ; Xinrong Liang, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 215 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fenêtre (bâtiment)
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] photographie aérienne oblique
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Deep learning methods are typically data-hungry and require many labelled samples. Unfortunately, the amount of effort required to label the data has significantly hindered the application of deep learning methods, especially in 3D modelling tasks requiring heterogeneous samples. This paper proposes a semi-supervised adversarial recognition strategy embedded in the inverse procedural modelling engine to reduce data annotation costs for learning to model 3D façades. Beginning with textured level-of-details models, we use convolutional neural networks to recognise the types and estimate the parameters of windows from image patches. The window types and parameters are then assembled into the procedural grammar. A simple procedural engine is built inside off-the-shelf 3D modelling software, producing fine-grained window geometries. To obtain a useful model from a few labelled samples, we leverage a generative adversarial network to train the feature extractor in a semi-supervised manner. The adversarial training strategy exploits the unlabelled data to stabilise the training phase. Experiments using publicly available façade image datasets reveal that the proposed methods can improve classification accuracy and parameter estimation by approximately 10% and 50%, respectively, under the same network structure. In addition, performance gains are more pronounced when testing against unseen data featuring different façade styles. Numéro de notice : A2022-666 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.014 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101528
in ISPRS Journal of photogrammetry and remote sensing > vol 192 (October 2022) . - pp 215 - 231[article]