Détail de l'auteur
Auteur Lin Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lin Zhou in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lin Zhou, Auteur ; Zhenfeng Shao, Auteur ; Shugen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 383 - 398 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] carte climatique
[Termes IGN] Chine
[Termes IGN] filtre de déchatoiement
[Termes IGN] ilot thermique urbain
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] température de l'airRésumé : (auteur) As a newly developed classification system, the LCZ scheme provides a research framework for Urban Heat Island (UHI) studies and standardizes the worldwide urban temperature observations. With the growing popularity of deep learning, deep learning-based approaches have shown great potential in LCZ mapping. Three major cities in China are selected as the study areas. In this study, we design a deep convolutional neural network architecture, named Residual combined Squeeze-and-Excitation and Non-local Network (RSNNet), that consists of the Squeeze-and-Excitation (SE) block and non-local block to classify LCZ using freely available Sentinel-1 SAR and Sentinel-2 multispectral imagery. Overall Accuracy (OA) of 0.9202, 0.9524 and 0.9004 for three selected cities are obtained by applying RSNNet and training data of individual city, and OA of 0.9328 is obtained by training RSNNet with data from all three cities. RSNNet outperforms other popular Convolutional Neural Networks (CNNs) in terms of LCZ mapping accuracy. We further design a series of experiments to investigate the effect of different characteristics of Sentinel-1 SAR data on the performance of RSNNet in LCZ mapping. The results suggest that the combination of SAR and multispectral data can improve the accuracy of LCZ classification. The proposed RSNNet achieves an OA of 0.9425 when integrating the three decomposed components with Sentinel-2 multispectral images, 2.44% higher than using Sentinel-2 images alone. Numéro de notice : A2022-723 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2030654 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2030654 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101666
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 383 - 398[article]