Détail de l'auteur
Auteur Jiawei Liu |
Documents disponibles écrits par cet auteur (1)



A spatial distribution: Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil / Jiawei Liu in Science of the total environment, vol 859 n° 1 (February 2023)
![]()
[article]
Titre : A spatial distribution: Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil Type de document : Article/Communication Auteurs : Jiawei Liu, Auteur ; Hou Kang, Auteur ; Wendong Tao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 160112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] autocorrélation spatiale
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] métal lourd
[Termes IGN] pollution des sols
[Termes IGN] risque de pollution
[Termes IGN] traçabilitéRésumé : (auteur) With the rapid development of urbanization, heavy metal pollution of soil has received great attention. Over-enrichment of heavy metals in soil may endanger human health. Assessing soil pollution and identifying potential sources of heavy metals are crucial for prevention and control of soil heavy metal pollution. This study introduced a spatial distribution - principal component analysis (SD-PCA) model that couples the spatial attributes of soil pollution with linear data transformation by the eigenvector-based principal component analysis. By evaluating soil pollution in the spatial dimension it identifies the potential sources of heavy metals more easily. In this study, soil contamination by eight heavy metals was investigated in the Lintong District, a typical multi-source urban area in Northwest China. In general, the soils in the study area were lightly contaminated by Cr and Pb. Pearson correlation analysis showed that Cr was negatively correlated with other heavy metals, whereas the spatial autocorrelation analysis revealed that there was strong association in the spatial distribution of eight heavy metals. The aggregation forms were more varied and the correlation between Cr contamination and other heavy metals was lower. The aggregation forms of Mn and Cu, Zn and Pb, on the other hand, were remarkably comparable. Agriculture was the largest pollution source, contributing 65.5 % to soil pollution, which was caused by the superposition of multiple heavy metals. Additionally, traffic and natural pollution sources contributed 17.9 % and 11.1 %, respectively. The ability of this model to track pollution of heavy metals has important practical significance for the assessment and control of multi-source soil pollution. Numéro de notice : A2023-009 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scitotenv.2022.160112 Date de publication en ligne : 11/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.160112 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102115
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 160112[article]