Détail de l'auteur
Auteur Romain Jolivet |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake / Cédric Twardzik in Earth and planetary science letters, vol 600 (15 December 2022)
[article]
Titre : Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake Type de document : Article/Communication Auteurs : Cédric Twardzik, Auteur ; Zacharie Duputel, Auteur ; Romain Jolivet, Auteur ; Emilie Klein, Auteur ; Paul Rebischung , Auteur Année de publication : 2022 Projets : SLES-S5 / Nocquet, Jean-Mathieu Article en page(s) : n° 117835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Chili
[Termes IGN] coordonnées GNSS
[Termes IGN] effondrement de terrain
[Termes IGN] inférence
[Termes IGN] matrice de covariance
[Termes IGN] séisme
[Termes IGN] série temporelle
[Termes IGN] sismologieRésumé : (auteur) We investigate the initiation phase of the 2014 Mw8.1 Iquique earthquake in northern Chile. In particular, we focus on the month preceding the mainshock, a time period known to exhibit an intensification of the seismic and aseismic activity in the region. The goal is to estimate the time-evolution and partitioning of seismic and aseismic slip during the preparatory phase of the mainshock. To do so, we develop a Bayesian inversion scheme to infer the spatio-temporal evolution of pre-slip from position time-series along with the corresponding uncertainty. To extract the aseismic component to the pre-seismic motion, we correct geodetic observations from the displacement induced by foreshocks. We find that aseismic slip accounts for ∼80 percents of the slip budget. That aseismic slip takes the form of a slow-slip events occurring between 20 to 5 days before the future mainshock. This time-evolution is not consistent with self-accelerating fault slip, a model that is often invoked to explain earthquake nucleation. Instead, the slow-slip event seems to have interacted with the foreshock sequence such that the foreshocks contributed to the arrest of aseismic slip. In addition, we observe some evidence of late self-accelerating slip, but associated with large uncertainties, making it difficult to assess its reliability from our observations alone. Numéro de notice : A2022-698 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2022.117835 Date de publication en ligne : 26/10/2022 En ligne : https://doi.org/10.1016/j.epsl.2022.117835 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102117
in Earth and planetary science letters > vol 600 (15 December 2022) . - n° 117835[article]Monitoring and modeling of the Sacramento Valley aquifer (California) using geodetic and piezometric measurements / Stacy Larochelle (2022)
Titre : Monitoring and modeling of the Sacramento Valley aquifer (California) using geodetic and piezometric measurements Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Manon Dalaison, Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Laurent Longuevergne, Auteur ; Donald F. Argus, Auteur ; Romain Jolivet, Auteur ; Jean-Philippe Avouac, Auteur Editeur : Washington DC [Maryland - Etats-Unis] : American Geophysical Union AGU Année de publication : 2022 Conférence : AGU 2022, Fall meeting, American Geophysical Union Fall Meeting 12/12/2022 16/12/2022 Chicago Illinois - Etats-Unis Importance : n° NS23A-06 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] aquifère
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] données GNSS
[Termes IGN] hydrogéologie
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Changes in groundwater levels associated with hydroclimatic variations and anthropogenic water extraction can deform the solid Earth, both elastically and inelastically. Satellite-based geodetic techniques which measure the Earth’s surface displacements can thus be used to track changing conditions in aquifer systems. However, accurately extracting groundwater-induced deformation signals still poses a challenge as geodetic techniques like GNSS and InSAR also record noise, systematic errors and other sources of deformation. In this study, we take advantage of the relatively dense in situ groundwater monitoring network of the Sacramento Valley aquifer in California to constrain its deformation and hydromechanical properties. We start by characterizing the main seasonal and multiannual fluctuations in groundwater levels with an Independent Component Analysis (ICA) and exploit the resulting temporal signature to extract the associated deformation field from GNSS and InSAR time series. We then develop a poroelastic model of the aquifer to invert for its elastic storage capacity and estimate the respective contributions of elastic and inelastic processes to long-term subsidence. Our modeling also suggests that depth-dependent elastic properties are necessary to explain the spatial distribution of horizontal poroelastic displacements measured by GNSS. This work has important implications for the sustainable management of heavily-stressed Californian aquifers but also serves as a calibration between in situ and remote sensing techniques, which is essential for the successful deployment of satellite-based groundwater monitoring in areas with sparse field-based instrumentation. Numéro de notice : C2022-053 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1093662 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103158