Détail de l'auteur
Auteur Yuki Akiyama |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Accuracy of vacant housing detection models: An empirical evaluation using municipal and national census datasets / Kanta Sayuda in Transactions in GIS, vol 26 n° 7 (November 2022)
[article]
Titre : Accuracy of vacant housing detection models: An empirical evaluation using municipal and national census datasets Type de document : Article/Communication Auteurs : Kanta Sayuda, Auteur ; Euijung Hong, Auteur ; Yuki Akiyama, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3003 - 3027 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] géocodage
[Termes IGN] immobilier (secteur)
[Termes IGN] Japon
[Termes IGN] logementRésumé : (auteur) In Japan, the rise in vacant housing has created the need to develop quick, effective, and inexpensive methods to detect the spatial distribution of vacant housing at the municipal level. However, due to incomplete and inaccessible data, the change in the accuracy of the vacant housing detection model must be evaluated while accounting for the limited data. Therefore, this study compares the performance of vacant housing detection models for different data combinations (Basic Resident Register; building registration, water usage, and national census) by considering Wakayama City, Japan, as the case study setting. Three main findings emerged: (1) the contribution of the data to the accuracy varies with the combination of datasets and metrics; (2) even if specific municipal data are unavailable, it is possible to acquire a similar accuracy by combining other data; and (3) the missing value contributes to the vacant housing detection rather than the feature value itself. Numéro de notice : A2022-887 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12992 Date de publication en ligne : 31/10/2022 En ligne : https://doi.org/10.1111/tgis.12992 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102217
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 3003 - 3027[article]