Détail de l'auteur
Auteur Merve Yılmaz |
Documents disponibles écrits par cet auteur (1)



A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
![]()
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]