Détail de l'auteur
Auteur Evan samzun |
Documents disponibles écrits par cet auteur (1)



Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD / Evan samzun in XYZ, n° 179 (juin 2024)
[article]
Titre : Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD Type de document : Article/Communication Auteurs : Evan samzun, Auteur Année de publication : 2024 Article en page(s) : pp. 35 - 42 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification
[Termes IGN] image aérienne
[Termes IGN] intelligence artificielle
[Termes IGN] Lidar
[Termes IGN] semis de pointsRésumé : Ce travail présente une étude portant sur la classification de nuages de points issus d’une acquisition aérienne, en se concentrant sur les données acquises dans le cadre du projet national LiDAR HD. Il réalise une analyse critique des outils proposés par Terrascan et des méthodes pa- ramétriques qui offrent un bon rapport temps/qualité, mais il subsiste des confusions qui demandent un temps de correction conséquent. De plus, les outils Terrascan sont limités à la classification du sol, des bâtiments et d’une partie de la végétation. Il n’est pas proposé de méthodes efficaces pour classifier des éléments de la classe du sursol pérenne, comme les pylônes électriques ou les éoliennes notamment. Pour y remédier, une autre méthode innovante, basée sur les descripteurs 3D est proposée. Cette méthode offre une meilleure détection des bâtiments et permet, en outre, de classifier des éléments du sursol pérenne. Enfin, il est étudié les synergies entre les différents outils testés. Puis les performances d’une IA sont introduites afin de discuter de l’avenir de la classification des nuages de points aériens. Numéro de notice : A2024-17902 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103658
in XYZ > n° 179 (juin 2024) . - pp. 35 - 42[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2024021 RAB Revue Centre de documentation En réserve L003 Exclu du prêt