Détail de l'auteur
Auteur Oliver Montenbruck |
Documents disponibles écrits par cet auteur (15)



Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver / Oliver Montenbruck in Journal of geodesy, vol 95 n° 10 (October 2021)
![]()
[article]
Titre : Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Stefan Hackel, Auteur ; Martin Wermuth, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 109 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] étalonnage en vol
[Termes IGN] océanographie spatiale
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] récepteur Galileo
[Termes IGN] récepteur GPSRésumé : (auteur) The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm. Numéro de notice : A2021-702 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01563-z Date de publication en ligne : 05/09/2021 En ligne : https://doi.org/10.1007/s00190-021-01563-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98585
in Journal of geodesy > vol 95 n° 10 (October 2021) . - n° 109[article]Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations / Oliver Montenbruck in Journal of geodesy, vol 92 n° 7 (July 2018)
![]()
[article]
Titre : Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Stefan Hackel, Auteur ; Adrian Jäggi, Auteur Année de publication : 2018 Article en page(s) : pp 711 - 726 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données altimétriques
[Termes IGN] double différence
[Termes IGN] orbitographie
[Termes IGN] phase
[Termes IGN] Sentinel-3Résumé : (Auteur) The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d’Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM. Numéro de notice : A2018-453 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1090-2 Date de publication en ligne : 27/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1090-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91044
in Journal of geodesy > vol 92 n° 7 (July 2018) . - pp 711 - 726[article]Galileo status: orbits, clocks, and positioning / Peter Steigenberger in GPS solutions, vol 21 n° 2 (April 2017)
![]()
[article]
Titre : Galileo status: orbits, clocks, and positioning Type de document : Article/Communication Auteurs : Peter Steigenberger, Auteur ; Oliver Montenbruck, Auteur Année de publication : 2017 Article en page(s) : pp 319 – 331 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] constellation Galileo
[Termes IGN] données Galileo
[Termes IGN] Galileo
[Termes IGN] positionnement ponctuel précisRésumé : (auteur) The European Global Navigation Satellite System Galileo is close to declaration of initial services. The current constellation comprises a total of 12 active satellites, four of them belonging to the first generation of In-Orbit Validation satellites, while the other eight are Full Operational Capability (FOC) satellites. Although the first pair of FOC satellites suffered from a launch anomaly resulting in an elliptical orbit, these satellites can be used for scientific applications without relevant limitations. The quality of broadcast orbits and clocks has significantly improved since the beginning of routine transmissions and has reached a signal-in-space range error of 30 cm. Precise orbit products generated by the scientific community achieve an accuracy of about 5 cm if appropriate models for the solar radiation pressure are applied. The latter is also important for an assessment of the clock stability as orbit errors are mapped to the apparent clock. Dual-frequency single point positioning with broadcast orbits and clocks of nine Galileo satellites that have so far been declared healthy already enables an accuracy at a few meters. Galileo-only precise point positioning approaches a precision of 2 cm in static mode using daily solutions. Numéro de notice : A2017-211 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-016-0566-5 En ligne : http://dx.doi.org/10.1007/s10291-016-0566-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85051
in GPS solutions > vol 21 n° 2 (April 2017) . - pp 319 – 331[article]Precision on board : orbit determination of LEO satellites with real-time corrections / André Hauschild in GPS world, vol 28 n° 4 (April 2017)
[article]
Titre : Precision on board : orbit determination of LEO satellites with real-time corrections Type de document : Article/Communication Auteurs : André Hauschild, Auteur ; Javier Tegedor, Auteur ; Oliver Montenbruck, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 42 - 47 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] éphémérides de satellite
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] précision du positionnement
[Termes IGN] simulation
[Termes IGN] temps réelRésumé : (Auteur) Precise point positioning (PPP) with real-time orbit and clock correction streams has become an established technique over the past decade. Several free as well as commercial sources of precise correction streams are available through the internet or via a satellite link to geostationary satellites. Many applications exist for land, air and sea applications, but use of real-time corrections for precise positioning has not extended into orbit yet, although a number of low Earth orbit (LEO) satellite missions have a demand for precise orbit determination (POD). Mission requirements often allow for a relatively high latency for the availability of the precise orbit products, thus ground-based, near-real-time processing is sufficient. However, future satellites with altimeter and radio-occultation payloads may require real-time POD to enable onboard processing of science data for short-term forecasting or now-casting of meteorology data, open-loop instrument operations of radar payloads, or quick-look onboard science data generation. Also, precise real-time orbit information may be used for constellation maintenance of satellite formations. Despite early technology readiness demonstrations by the Jet Propulsion Laboratory carried out one decade ago to transmit real-time corrections via geostationary relay satellites to LEO spacecraft, this technique has so far not been implemented and used in a space mission. Numéro de notice : A2017-292 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85327
in GPS world > vol 28 n° 4 (April 2017) . - pp 42 - 47[article]
Titre : Springer handbook of Global Navigation Satellite Systems Type de document : Guide/Manuel Auteurs : Peter J.G. Teunissen, Éditeur scientifique ; Oliver Montenbruck, Éditeur scientifique Editeur : Springer International Publishing Année de publication : 2017 Importance : 1327 Format : 20 x 27 cm ISBN/ISSN/EAN : 978-3-319-42926-7 Note générale : Bibliographie et glossaire Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] BeiDou
[Termes IGN] couplage GNSS-INS
[Termes IGN] filtre de Kalman
[Termes IGN] Galileo
[Termes IGN] géodynamique
[Termes IGN] Global Navigation Satellite System
[Termes IGN] Global Orbitography Navigation Satellite System
[Termes IGN] horloge atomique
[Termes IGN] interférence
[Termes IGN] ionosphère
[Termes IGN] méthode des moindres carrés
[Termes IGN] orbitographie
[Termes IGN] orientation
[Termes IGN] positionnement différentiel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnement
[Termes IGN] récepteur GNSS
[Termes IGN] réflectométrie par GNSS
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GNSS
[Termes IGN] système d'extension
[Termes IGN] temps universel
[Termes IGN] traitement du signal
[Termes IGN] trajet multipleRésumé : (Editeur) This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike. Note de contenu :
PRINCIPLES OF GNSS
1. Introduction to GNSS
2. Time and reference systems
3. Satellite orbits and attitude
4. Signals and modulation
5. Clocks
6. Atmospheric signal propagation
SATELLITE NAVIGATION SYSTEMS
7. The Global Positioning System (GPS)
8. GLONASS
9. Galileo
10. Chinese navigation satellite systems
11. Regional systems
12. Satellite based augmentation systems
GNSS RECEIVERS AND ANTENNAS
13. Receiver architecture
14. Signal processing
15. Multipath
16. Interference
17. Antennas
18. Simulators and test equipment
GNSS algorithms and models
19. Basic observation equations
20. Combinations of observations
21. Positioning model
22. Least-squares estimation and Kalman filtering
23. Carrier phase integer ambiguity resolution
24. Batch and recursive model validation
POSITIONING AND NAVIGATION
25. Precise point positioning
26. Differential positioning
27. Attitude determination
28. GNSS/INS integration
29. Land and maritime applications
30. Aviation applications
31. Ground based augmentation systems
32. Space applications
SURVEYING, GEODESY AND GEODYNAMICS
33. The international GNSS service
34. Orbit and clock product generation
35. Surveying
36. Geodesy
37. Geodynamics
GNSS REMOTE SENSING AND TIMING
38. Monitoring of the neutral atmosphere
39. Ionosphere monitoring
40. Reflectometry
41. GNSS time and frequency transfer
Annex A: Data formats
Annex B: GNSS parametersNuméro de notice : 22723 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Manuel Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85346 ContientRéservation
Réserver ce documentExemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité 22723-01 30.61 Livre Centre de documentation Géodésie Disponible 22723-04 DEP-EXG Livre Equipe Géodésie Dépôt en unité Exclu du prêt 22723-03 DEP-ELG Livre Marne-la-Vallée Dépôt en unité Exclu du prêt 22723-02 DEP-PMC Livre Saint-Mandé Dépôt en unité Exclu du prêt A study on the dependency of GNSS pseudorange biases on correlator spacing / André Hauschild in GPS solutions, vol 20 n° 2 (April 2016)
PermalinkGNSS satellite geometry and attitude models / Oliver Montenbruck in Advances in space research, vol 56 n° 6 (September 2015)
PermalinkThe mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning / Nandakumaran Nadarajah in GPS solutions, vol 19 n° 3 (July 2015)
PermalinkEnhanced solar radiation pressure modeling for Galileo satellites / Oliver Montenbruck in Journal of geodesy, vol 89 n° 3 (March 2015)
PermalinkIGS-MGEX, on prépare le terrain pour les sciences et techniques GNSS multi-constellation / Oliver Montenbruck in XYZ, n° 140 (septembre - novembre 2014)
PermalinkGalileo IOV-3 broadcasts E1, E5, E6 signals / Oliver Montenbruck in GPS world, vol 24 n° 1 (January 2013)
PermalinkCONGO: First GPS/GIOVE tracking network for science, research / Oliver Montenbruck in GPS world, vol 20 n° 9 (September 2009)
PermalinkMaking a difference with GPS: time differences for kinematic positioning with low-cost receivers / J. Traugott in GPS world, vol 19 n° 5 (May 2008)
PermalinkSpacecraft formation flying: relative positioning using dual-frequency carrier phase / R. Kroes in GPS world, vol 15 n° 7 (July 2004)
PermalinkEphemeridenrechnung und Bahnbestimmung geostationärer Satelliten mit Hilfe der Taylorreihenintegration / Oliver Montenbruck (1991)
Permalink