Détail de l'auteur
Auteur Aidy M. Muslim |
Documents disponibles écrits par cet auteur



Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])
![]()
[article]
Titre : Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 214 - 1232 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] carte bathymétrique
[Termes descripteurs IGN] Chine, mer de
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification hypercube
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] fond marin
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] Malaisie
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] récif corallien
[Termes descripteurs IGN] réflectance spectraleRésumé : (auteur) Remote sensing has potential in studies of the benthic habitat and extracting the reflectance from the data of multispectral sensors, but traditional image classification techniques cannot provide coral habitat maps with adequate accuracy. This study tested five traditional and three ensemble classification techniques on QuickBird for mapping the benthic composition of coral reefs on the Lang Tengah Island (Malaysia). The common techniques, minimum distance, maximum likelihood, K-nearest neighbour, Fisher and parallelepiped techniques were compared with ensemble classifiers, such as majority voting (MV), simple averaging, and mode combination. The per-class accuracy of the habitat detection improved in the ensemble classifiers; in particular, the MV classifier achieved 95%, 65%, 75% and 95% accuracies for coral, sparse coral, coral rubble and sand, respectively. Ensembles increased the accuracy of the habitat mapping classification by 28%, relative to conventional techniques. Thus, the ensemble techniques can be preferred over the traditional for benthic habitat mapping. Numéro de notice : A2020-459 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1557263 date de publication en ligne : 12/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1557263 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95566
in Geocarto international > vol 35 n° 11 [01/08/2020] . - pp 214 - 1232[article]Localized soft classification for super-resolution mapping of the shoreline / Aidy M. Muslim in International Journal of Remote Sensing IJRS, vol 27 n° 11 (June 2006)
[article]
Titre : Localized soft classification for super-resolution mapping of the shoreline Type de document : Article/Communication Auteurs : Aidy M. Muslim, Auteur ; Giles M. Foody, Auteur ; P.M. Atkinson, Auteur Année de publication : 2006 Article en page(s) : pp 2271 - 2285 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse infrapixellaire
[Termes descripteurs IGN] carte topographique
[Termes descripteurs IGN] histogramme
[Termes descripteurs IGN] image Ikonos
[Termes descripteurs IGN] Malaisie
[Termes descripteurs IGN] trait de côteRésumé : (Auteur) The Malaysian shoreline is dynamic and constantly changing in location. Although the shoreline may be mapped accurately from fine spatial resolution imagery, this is an impractical approach for use over large areas. An alternative approach using coarse spatial resolution satellite sensor imagery is to fit a shoreline boundary at sub-pixel scale. This paper evaluates the use of soft classification and super-resolution mapping techniques to accurately map the shoreline. A localized soft classification approach was used to provide an accurate prediction of the thematic composition of each image pixel. This involves the use of training statistics derived locally rather than globally in the classification. Using the derived class proportion information the shoreline boundary was determined within the pixels using super-resolution techniques. Results show that by using a localized approach in the prediction of the pixel's thematic class composition, the accuracy of shoreline prediction was increased. Notably, the use of the localized approach resulted in the shoreline with an rms error of Numéro de notice : A2006-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28027
in International Journal of Remote Sensing IJRS > vol 27 n° 11 (June 2006) . - pp 2271 - 2285[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 080-06061 RAB Revue Centre de documentation En réserve 3L Exclu du prêt