Détail de l'auteur
Auteur Arnaud Le Bris
Commentaire :
Researcher in LaSTIG, STRUDEL team
Autorités liées :
HAL :
idRef :
autre URL :
ORCID :
Scopus :
Publons :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (90)



Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) / Vahid Nasiri in Canadian Journal of Forest Research, Vol 51 n° 7 (July 2021)
![]()
[article]
Titre : Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Ali Asghar Darvishsefat, Auteur ; Hossein Arefi, Auteur ; Marc Pierrot-Deseilligny , Auteur ; Manochehr Namiranian, Auteur ; Arnaud Le Bris
, Auteur
Année de publication : 2021 Projets : 1-Pas de projet / Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] diamètre des arbres
[Termes IGN] filtre passe-bas
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] peuplement mélangé
[Termes IGN] segmentationRésumé : (Auteur) Tree height and crown diameter are two common individual tree attributes that can be estimated from Unmanned Aerial Vehicles (UAVs) images thanks to photogrammetry and structure from motion. This research investigates the potential of low-cost UAV aerial images to estimate tree height and crown diameter. Two successful flights were carried out in two different seasons corresponding to leaf-off and leaf-on conditions to generate Digital Terrain Model (DTM) and Digital Surface Model (DSM), which were further employed in calculation of a Canopy Height Model (CHM). The CHM was used to estimate tree height using low pass and local maximum filters, and crown diameter was estimated based on an Invert Watershed Segmentation (IWS) algorithm. UAV-based tree height and crown diameter estimates were validated against field measurements and resulted in 3.22 m (10.1%) and 0.81 m (7.02%) RMSE, respectively. The results showed high agreement between our estimates and field measurements, with R2=0.808 for tree height and R2=0.923 for crown diameter. Generally, the accuracy of the results was considered acceptable and confirmed the usefulness of this approach for estimating tree heights and crown diameter. Numéro de notice : A2021-296 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1139/cjfr-2020-0125 Date de publication en ligne : 26/01/2021 En ligne : https://dx.doi.org/10.1139/cjfr-2020-0125 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97376
in Canadian Journal of Forest Research > Vol 51 n° 7 (July 2021)[article]A data fusion-based framework to integrate multi-source VGI in an authoritative land use database / Lanfa Liu in International Journal of Digital Earth, vol 14 n° 4 (April 2021)
![]()
[article]
Titre : A data fusion-based framework to integrate multi-source VGI in an authoritative land use database Type de document : Article/Communication Auteurs : Lanfa Liu, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Laurence Jolivet
, Auteur ; Arnaud Le Bris
, Auteur ; Linda M. See, Auteur
Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 480 - 509 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données d'occupation du sol
[Termes IGN] base de données localisées de référence
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] fusion de données
[Termes IGN] intégration de données
[Termes IGN] mise à jour de base de données
[Termes IGN] OCS GE
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) Updating an authoritative Land Use and Land Cover (LULC) database requires many resources. Volunteered geographic information (VGI) involves citizens in the collection of data about their spatial environment. There is a growing interest in using existing VGI to update authoritative databases. This paper presents a framework aimed at integrating multi-source VGI based on a data fusion technique, in order to update an authoritative land use database. Each VGI data source is considered to be an independent source of information, which is fused together using Dempster-Shafer Theory (DST). The framework is tested in the updating of the authoritative land use data produced by the French National Mapping Agency. Four data sets were collected from several in-situ and remote campaigns run between 2018 and 2020 by contributors with varying profiles. The data fusion approach achieved an overall accuracy of 85.6% for the 144 features having at least two contributions when the confidence threshold was set to 0.05. Despite the heterogeneity and limited amount of VGI used, the results are promising, with 99% of the LU polygons updated or enriched. These results show the potential of using multi-source VGI to update or enrich authoritative LU data and potentially LULC data more generally. Numéro de notice : A2021-069 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/17538947.2020.1842524 Date de publication en ligne : 05/11/2020 En ligne : https://doi.org/10.1080/17538947.2020.1842524 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96522
in International Journal of Digital Earth > vol 14 n° 4 (April 2021) . - pp 480 - 509[article]
Titre : AI4GEO: a data intelligence platform for 3D geospatial mapping Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Pierre Lassalle, Auteur ; Simon Baillarin, Auteur ; Bruno Vallet , Auteur ; Arnaud Le Bris
, Auteur ; Gaëlle Romeyer, Auteur ; Guy Le Besnerais, Auteur ; Flora Weissgerber, Auteur ; Gilles Foulon, Auteur ; Vincent Gaudissart, Auteur ; Christophe Triquet, Auteur ; Michael Darques, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 817 - 823 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] jeu de données localisées
[Termes IGN] plateforme logicielle
[Termes IGN] segmentation sémantique
[Termes IGN] traitement de données localiséesRésumé : (auteur) The availability of 3D Geospatial information is a key issue for many expanding sectors such as autonomous vehicles, business intelligence and urban planning. Its production is now possible thanks to the abundance of available data (Earth observation satellite constellations, insitu data, …) but manual interventions are still needed to guarantee a high level of quality, which prevents mass production. New artificial intelligence and big data technologies adapted to 3D imagery can help to remove these obstacles. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information and new added-value services. This paper will first introduce AI4GEO initiative, context and overall objectives. It will then present the current status of the project and in particular it will focus on the innovative platform put in place to handle big 3D datasets for analytics needs and it will present the first results of 3D semantic segmentations and associated perspectives. Numéro de notice : C2021-015 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-817-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98067 An efficient representation of 3D buildings: application to the evaluation of city models / Oussama Ennafii (2021)
![]()
Titre : An efficient representation of 3D buildings: application to the evaluation of city models Type de document : Article/Communication Auteurs : Oussama Ennafii , Auteur ; Arnaud Le Bris
, Auteur ; Florent Lafarge, Auteur ; Clément Mallet
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : 1-Pas de projet / Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 329 - 336 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées 3D
[Termes IGN] erreur systématique
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] objet géographique urbain
[Termes IGN] qualité du modèle
[Termes IGN] représentation géométriqueRésumé : (auteur) City modeling consists in building a semantic generalized model of the surface of urban objects. These could be seen as a special case of Boundary representation surfaces. Most modeling methods focus on 3D buildings with Very High Resolution overhead data (images and/or 3D point clouds). The literature abundantly addresses 3D mesh processing but frequently ignores the analysis of such models. This requires an efficient representation of 3D buildings. In particular, for them to be used in supervised learning tasks, such a representation should be scalable and transferable to various environments as only a few reference training instances would be available. In this paper, we propose two solutions that take into account the specificity of 3D urban models. They are based on graph kernels and Scattering Network. They are here evaluated in the challenging framework of quality evaluation of building models. The latter is formulated as a supervised multilabel classification problem, where error labels are predicted at building level. The experiments show for both feature extraction strategy strong and complementary results (F-score > 74% for most labels). Transferability of the classification is also examined in order to assess the scalability of the evaluation process yielding very encouraging scores (F-score > 86% for most labels). Numéro de notice : C2021-010 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-329-2021 Date de publication en ligne : 28/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2021-329-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98035 Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion Type de document : Article/Communication Auteurs : Olivier Stocker, Auteur ; Arnaud Le Bris , Auteur
Année de publication : 2020 Projets : MAESTRIA / Mallet, Clément Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 557 - 564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Needs for fine-grained, accurate and up-to-date land cover (LC) data are important to answer both societal and scientific purposes. Several automatic products have already been proposed, but are mostly generated out of satellite sensors like Sentinel-2 (S2) or Landsat. Metric sensors, e.g. SPOT-6/7, have been less considered, while they enable (at least annual) acquisitions at country scale and can now be efficiently processed thanks to deep learning (DL) approaches. This study thus aimed at assessing whether such sensor can improve such land cover products. A custom simple yet effective U-net - Deconv-Net inspired DL architecture is developed and applied to SPOT-6/7 and S2 for different LC nomenclatures, aiming at comparing the relevance of their spatial/spectral configurations and investigating their complementarity. The proposed DL architecture is then extended to data fusion and applied to previous sensors. At the end, the proposed fusion framework is used to enrich an existing S2 based LC product, as it is generic enough to cope with fusion at distinct levels. Numéro de notice : A2020-504 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-557-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-557-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95644
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 557 - 564[article]CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkCorrection of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkUse of automated change detection and VGI sources for identifying and validating urban land use change / Ana-Maria Olteanu-Raimond in Remote sensing, vol 12 n° 7 (April 2020)
PermalinkClassification of time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne (2020)
PermalinkPermalinkVers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
PermalinkA learning approach to evaluate the quality of 3D city models / Oussama Ennafii in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 12 (December 2019)
![]()
PermalinkPartial linear NMF-based unmixing methods for detection and area estimation of photovoltaic panels in urban hyperspectral remote sensing data / Moussa Sofiane Karoui in Remote sensing, vol 11 n° 18 (September 2019)
PermalinkArchival aerial photogrammetric surveys, a data source to study land use/cover evolution over the last century : opportunities and issues / Arnaud Le Bris (2019)
PermalinkA comparison of several spectral and spatial configuration for urban material classification / Arnaud Le Bris (2019)
Permalink