Détail de l'autorité
ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 5
nom du congrès :
ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow
début du congrès :
31/08/2020
fin du congrès :
02/09/2020
ville du congrès :
Nice (en ligne)
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
SemCity Toulouse: a benchmark for building instance segmentation in satellite images / Ribana Roscher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-5-2020 (August 2020)
[article]
Titre : SemCity Toulouse: a benchmark for building instance segmentation in satellite images Type de document : Article/Communication Auteurs : Ribana Roscher, Auteur ; Michele Volpi, Auteur ; Clément Mallet , Auteur ; Lukas Drees, Auteur ; Jan Dirk Wegner, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 5 Article en page(s) : pp 109 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] instance
[Termes IGN] Toulouse
[Termes IGN] zone urbaine denseRésumé : (auteur) In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic segmentation annotation covering the same area plus an adjacent area 3 times larger. The data set addresses interested researchers from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning. Numéro de notice : A2020-503 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-5-2020-109-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95639
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-5-2020 (August 2020) . - pp 109 - 116[article]