Détail de l'autorité
RFIAP 2020, Reconnaissance des Formes, Image, Apprentissage et Perception 23/06/2020 26/06/2020 Vannes France Open Access Proceedings
nom du congrès :
RFIAP 2020, Reconnaissance des Formes, Image, Apprentissage et Perception
début du congrès :
23/06/2020
fin du congrès :
26/06/2020
ville du congrès :
Vannes
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (1)



Recherche multimodale d'images aériennes multi-date à l'aide d'un réseau siamois / Margarita Khokhlova (2020)
![]()
![]()
Titre : Recherche multimodale d'images aériennes multi-date à l'aide d'un réseau siamois Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Valérie Gouet-Brunet
, Auteur ; Nathalie Abadie
, Auteur ; Liming Chen, Auteur
Editeur : Vannes : Université de Bretagne Sud Année de publication : 2020 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : RFIAP 2020, Reconnaissance des Formes, Image, Apprentissage et Perception 23/06/2020 26/06/2020 Vannes France Open Access Proceedings Importance : 11 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse du paysage
[Termes IGN] appariement d'images
[Termes IGN] architecture de réseau
[Termes IGN] BD ortho
[Termes IGN] BD Topo
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] géolocalisation
[Termes IGN] image aérienne
[Termes IGN] image multitemporelle
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] réseau neuronal siamois
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Cet article présente un réseau multimodal qui met en correspondance des images aériennes de territoires urbains et ruraux français prises à environ 15 ans d'intervalle. Il devrait être invariant à un large éventail de changements, tels que l'évolution du paysage au fil des années. Il exploite les images originales et les régions sémantiquement segmentées et étiquetées. Le coeur de la méthode est un réseau siamois qui apprend à extraire des caractéristiques des paires d'images correspondantes dans le temps et des paires non correspondantes. Ces descripteurs sont suffisamment discriminants pour qu'un simple classifieur k-NN suffise comme critère de géo-correspondance final. Dans cet article, nous dé-montrons que notre descripteur siamois surpasse les autres descripteurs d'images en termes de recherche d'images par contenu à travers le temps. Numéro de notice : C2020-003 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésNat DOI : sans En ligne : https://cap-rfiap2020.sciencesconf.org/data/RFIAP_2020_paper_21.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95446 Voir aussiDocuments numériques
en open access
rfiap2020_21_cameraready.pdfAdobe Acrobat PDF