Détail de l'autorité
TOSCA SLIM /
Autorités liées :
Nom :
TOSCA SLIM
titre complet :
Space Lidar for Improved Multisource Forest Inventory
|
Documents disponibles (1)



Improving GEDI footprint geolocation using a high resolution digital terrain model / Anouk Schleich (2021)
![]()
Titre : Improving GEDI footprint geolocation using a high resolution digital terrain model Type de document : Article/Communication Auteurs : Anouk Schleich, Auteur ; Maxime Soma, Auteur ; Sylvie Durrieu, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Renaud
, Auteur ; Olivier Bouriaud
, Auteur
Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : TOSCA SLIM / Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Importance : pp 179 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fauchée
[Termes IGN] géoréférencement
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] modèle numérique de terrainRésumé : (auteur) [introduction] In 2018, NASA launched the Global Ecosystem Dynamics Investigation (GEDI) mission, a high resolution lidar system installed onboard the International Space Station (ISS). It is producing high quality 3D observations of the Earth surface structure, which are highly relevant to study forest ecosystems at a global scale (Qi et al. 2019). GEDI data is composed of 25 m diameter circular footprints for which the waveform of the received energy intensity returned by the ground is recorded. Each GEDI footprint is georeferenced and its positioning accuracy (for version 1 releases) is estimated at 15-20 m in planimetry with a systematic component of 8-10 m and a noise of the order of 8 m (1). A final horizontal geolocation accuracy of 8 m is expected after further processing in the final version (Dubayah et al. 2020). Compared to most other spatial satellites the ISS is much closer to earth, causing more variations in its orientation and altitude. Therefore, geolocating data acquired by ISS sensors is more diffucult than geolocating data aquired by satellites (Dou et al. 2014). An improved geolocation of GEDI data is mandatory to evaluate their quality, by comparison with other earth observation data or field measurements, and to further facilitate their integration in ecosystem monitoring approaches. We propose a method to improve the georeferencing of GEDI footprints using a precise Digital Terrain Model (DTM). Numéro de notice : C2021-053 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1973 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1973 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99223