Détail de l'autorité
HIATUS / Giordano, Sébastien
Autorités liées :
Nom :
HIATUS
titre complet :
Historical Image Analysis for Territory evolUtion Stories
Auteurs :
Giordano, Sébastien
|
Documents disponibles (6)



Titre : CDPS: Constrained DTW-Preserving Shapelets Type de document : Article/Communication Auteurs : Hussein El Amouri, Auteur ; Thomas Lampert, Auteur ; Pierre Gançarski, Auteur ; Clément Mallet , Auteur
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2023 Collection : Lecture notes in Computer Science Sous-collection : Lecture Notes in Artificial Intelligence num. 13713 Projets : HIATUS / Giordano, Sébastien Conférence : ECML PKDD 2022, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 19/09/2022 23/09/2022 Grenoble France Proceedings Springer Projets : HERELLES / Gançarski, Pierre Importance : pp 21 - 37 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de données
[Termes IGN] analyse de groupement
[Termes IGN] classification
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] distance euclidienne
[Termes IGN] jeu de données localisées
[Termes IGN] série temporelle
[Termes IGN] traitement de données localisées
[Termes IGN] transformationRésumé : (auteur) The analysis of time series for clustering and classification is becoming ever more popular because of the increasingly ubiquitous nature of IoT, satellite constellations, and handheld and smart-wearable devices, etc. The presence of phase shift, differences in sample duration, and/or compression and dilation of a signal means that Euclidean distance is unsuitable in many cases. As such, several similarity measures specific to time-series have been proposed, Dynamic Time Warping (DTW) being the most popular. Nevertheless, DTW does not respect the axioms of a metric and therefore Learning DTW-Preserving Shapelets (LDPS) have been developed to regain these properties by using the concept of shapelet transform. LDPS learns an unsupervised representation that models DTW distances using Euclidean distance in shapelet space. This article proposes constrained DTW-preserving shapelets (CDPS), in which a limited amount of user knowledge is available in the form of must link and cannot link constraints, to guide the representation such that it better captures the user’s interpretation of the data rather than the algorithm’s bias. Subsequently, any unconstrained algorithm can be applied, e.g. K-means clustering, k-NN classification, etc, to obtain a result that fulfils the constraints (without explicit knowledge of them). Furthermore, this representation is generalisable to out-of-sample data, overcoming the limitations of standard transductive constrained-clustering algorithms. CLDPS is shown to outperform the state-of-the-art constrained-clustering algorithms on multiple time-series datasets. Numéro de notice : C2022-052 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-031-26387-3_2 Date de publication en ligne : 17/03/2023 En ligne : https://doi.org/10.1007/978-3-031-26387-3_2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103157 Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments / Daniela Craciun (2022)
![]()
Titre : Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments Type de document : Article/Communication Auteurs : Daniela Craciun , Auteur ; Arnaud Le Bris
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, Commission 2, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 21 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] estimation de pose
[Termes IGN] géoréférencement
[Termes IGN] gradient
[Termes IGN] histogramme
[Termes IGN] image ancienne
[Termes IGN] milieu naturel
[Termes IGN] modèle numérique de surfaceRésumé : (auteur) Automatic georeferencing for historical-to-nowadays aerial images represents the main ingredient for supplying territory evolution analysis and environmental monitoring. Existing georeferencing methods based on feature extraction and matching reported successful results for multi-epoch aerial images acquired in structured and man-made environments. While improving the state-of-the-art of the multi-epoch georeferencing problem, such frameworks present several limitations when applied to unstructured scenes, such as natural feature-less environments, characterized by homogenous or texture-less areas. This is mainly due to the lack of structured areas which often results in sparse and ambiguous feature matches, introducing inconsistencies during the pose estimation process. This paper addresses the automatic georeferencing problem for historical aerial images acquired in unstructured natural environments. The research work presented in this paper introduces a feature-less algorithm designed to perform historical-to-nowadays image matching for pose estimation in a fully automatic fashion. The proposed algorithm operates within two stages: (i) 2D patch extraction and matching and (ii) 3D patch-based local alignment. The final output is a set of 3D patch matches and the 3D rigid transformation relating each homologous patches. The obtained 3D point matches are designed to be injected into traditional multi-views pose optimisation engines. Experimental results on real datasets acquired over Fabas area situated in France demonstrate the effectiveness of the proposed method. Our findings illustrate that the proposed georeferencing technique provides accurate results in presence of large periods of time separating historical from nowadays aerial images (up to 48 years time span). Numéro de notice : C2022-020 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-21-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-21-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100846 Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
![]()
Titre : Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris
, Auteur ; Sébastien Giordano
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, Commission 3, 24th ISPRS Congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1217 - 1222 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] contraste local
[Termes IGN] correction radiométrique
[Termes IGN] fenêtre (informatique)
[Termes IGN] filtre de Wallis
[Termes IGN] morphologie mathématiqueRésumé : (auteur) An orthophotomosaic is as a single image that can be layered on a map. It is produced from a set of aerial images impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as the camera itself, like lens vignetting. These create some unsightly radiometric inhomogeneity in the mosaic that could be corrected by using a local adaptive filter, also named Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This current work introduces two elementary studies. In a first time, in order to quantify the loss of contrast due to the use of Wallis filter, a simple multi-scale score is proposed based on mathematical morphology operations. In a second time, an optimal window size for the filter is identified by considering some systematic radiometric behaviours in the images forming the mosaic through Principal Component Analysis (PCA). These two elementary studies are preliminary steps leading to a method of radiometric correction combining Wallis filtering and PCA. Numéro de notice : C2022-015 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Date de publication en ligne : 31/05/2022 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100841 CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments Type de document : Article/Communication Auteurs : Arnaud Le Bris , Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Année de publication : 2020 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 1013 - 1019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données historiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] modèle numérique de surface
[Termes IGN] occupation du sol
[Termes IGN] orthoimage
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes occurred since the mid 20th century. They provide a relatively dense temporal sampling of the territories with a very high spatial resolution. Thus, they offer time series data which can answer a large variety of long-term environmental monitoring studies. Besides, they are generally stereoscopic surveys, making it possible to derive 3D information (Digital Surface Models). In recent years, they have often been digitized, making them more suitable to be considered in automatic analyses processes. Some photogrammetric softwares make it possible to retrieve their geometry (pose and camera calibration) and to generate corresponding DSM and orthophotomosaic. Thus, archival aerial photogrammetric surveys appear as being a powerful remote sensing data source to study land use/cover evolution over the last century. However, several difficulties have to be faced to be able to use them in automatic analysis processes. Indeed, surveys available on a study area can exhibit very different characteristics: survey pattern, focal, spatial resolution, modality (panchromatic, colour, infrared…). Planimetric and altimetric accuracies of derived products strongly depend on these characteristics. Thus, analysis processes have to cope with these uncertainties. Another important gap states in the lack of training data. Deep learning methods and especially Convolutional Neural Networks (CNN) are at present the most efficient semantic segmentation methods as long as a sufficient training dataset is available. However, temporal gaps can be very important between existing available databases and archival data. In this study, two custom variants of simple yet effective U-net - Deconv-Net inspired DL architectures are developed to process ortho-image and DSM based information. They are then trained out of a groundtruth derived out of a recent database to process archival datasets. Numéro de notice : A2020-469 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-1013-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-1013-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95637
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 1013 - 1019[article]Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris
, Auteur ; Sébastien Giordano
, Auteur
Année de publication : 2020 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 871 - 876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] correction radiométrique
[Termes IGN] homogénéisation
[Termes IGN] image numériséeRésumé : (auteur) Orthophotomosaic is defined as a single image that can be layered on a map. The term “mosaic” implies that it is produced from a set of images, usually aerial images. Even if these images are taken during cloudless period, they are impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as imaging device systematisms, like lens vignetting. These create some unsightly radiometric inhomogeneity in the orthophotomosaic that could be corrected by using a Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This work introduces an alternative to Wallis filter by considering some systematic radiometric behaviours in the images through a principal component analysis process. Numéro de notice : A2020-501 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-871-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-871-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95642
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 871 - 876[article]Analyse, structuration et sémantisation des images aériennes [diaporama] / Valérie Gouet-Brunet (2020)
Permalink