Détail de l'autorité
MAESTRIA / Mallet, Clément
Autorités liées :
Nom :
MAESTRIA
titre complet :
Multi-modal Earth Observation Image Analysis - Analysis d’images multi-modales d’observation de la T
URL du projet :
Auteurs :
Mallet, Clément
|
Documents disponibles (7)



Fast estimation for robust supervised classification with mixture models / Erwan Giry Fouquet in Pattern recognition letters, vol 152 (December 2021)
![]()
[article]
Titre : Fast estimation for robust supervised classification with mixture models Type de document : Article/Communication Auteurs : Erwan Giry Fouquet, Auteur ; Mathieu Fauvel, Auteur ; Clément Mallet , Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément, ANITI / Mallet, Clément Article en page(s) : pp 320 - 326 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] méthode robuste
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Label noise is known to negatively impact the performance of classification algorithms. In this paper, we develop a model robust to label noise that uses both labelled and unlabelled samples. In particular, we propose a novel algorithm to optimize the model parameters that scales efficiently w.r.t. the number of training samples. Our contribution relies on a consensus formulation of the original objective function that is highly parallelizable. The optimization is performed with the Alternating Direction Method of Multipliers framework. Experimental results on synthetic datasets show an improvement of several orders of magnitude in terms of processing time, with no loss in terms of accuracy. Our method appears also tailored to handle real data with significant label noise. Numéro de notice : A2021-061 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.patrec.2021.10.020 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1016/j.patrec.2021.10.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99531
in Pattern recognition letters > vol 152 (December 2021) . - pp 320 - 326[article]Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery / Nicolas David in Remote sensing letters, vol 12 n° 10 (October 2021)
![]()
[article]
Titre : Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery Type de document : Article/Communication Auteurs : Nicolas David , Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Article en page(s) : pp 970 - 982 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] France (administrative)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] politique agricole commune
[Termes IGN] surveillance agricoleRésumé : (auteur) In this paper, we propose an operational solution for the yearly classification of crop parcels at national scale (namely France) for Land Parcel Identification System updating, under the Common Agricultural Policy (CAP) umbrella. Our pipeline is based on the ι2 open-source framework and fed with both time series of Sentinel-1 radar and Sentinel-2 optical images, with complementary contributions. Three conceivable scenarios are investigated with two sets of nomenclatures (17 and 43 classes): early, on-line, and late classifications. Experiments performed on 2017 show very satisfactory results (82–97%), locally almost on-par with state-of-the-art deep-based methods. We can conclude our framework offers a strong basis for country-scale operational deployment for 2020+CAP. Numéro de notice : A2021-600 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/2150704X.2021.1950940 En ligne : https://doi.org/10.1080/2150704X.2021.1950940 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98222
in Remote sensing letters > vol 12 n° 10 (October 2021) . - pp 970 - 982[article]Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
![]()
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : AI4GEO / Mallet, Clément, MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] inférence
[Termes IGN] mise à jour automatique
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 Date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion Type de document : Article/Communication Auteurs : Olivier Stocker, Auteur ; Arnaud Le Bris , Auteur
Année de publication : 2020 Projets : MAESTRIA / Mallet, Clément Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 557 - 564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Needs for fine-grained, accurate and up-to-date land cover (LC) data are important to answer both societal and scientific purposes. Several automatic products have already been proposed, but are mostly generated out of satellite sensors like Sentinel-2 (S2) or Landsat. Metric sensors, e.g. SPOT-6/7, have been less considered, while they enable (at least annual) acquisitions at country scale and can now be efficiently processed thanks to deep learning (DL) approaches. This study thus aimed at assessing whether such sensor can improve such land cover products. A custom simple yet effective U-net - Deconv-Net inspired DL architecture is developed and applied to SPOT-6/7 and S2 for different LC nomenclatures, aiming at comparing the relevance of their spatial/spectral configurations and investigating their complementarity. The proposed DL architecture is then extended to data fusion and applied to previous sensors. At the end, the proposed fusion framework is used to enrich an existing S2 based LC product, as it is generic enough to cope with fusion at distinct levels. Numéro de notice : A2020-504 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-557-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-557-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95644
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 557 - 564[article]Improved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
![]()
[article]
Titre : Improved crop classification with rotation knowledge using Sentinel-1 and -2 time series Type de document : Article/Communication Auteurs : Sébastien Giordano , Auteur ; Simon Bailly, Auteur ; Loïc Landrieu
, Auteur ; Nesrine Chehata
, Auteur
Année de publication : 2020 Projets : MAESTRIA / Mallet, Clément Article en page(s) : pp 431 - 441 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Alpes-de-haute-provence (04)
[Termes IGN] chaîne de traitement
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] parcelle agricole
[Termes IGN] photo-identification
[Termes IGN] Seine-et-Marne (77)
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (Auteur) Leveraging the recent availability of accurate, frequent, and multimodal (radar and optical) Sentinel-1 and -2 acquisitions, this paper investigates the automation of land parcel identification system (LPIS) crop type classification. Our approach allows for the automatic integration of temporal knowledge, i.e., crop rotations using existing parcel-based land cover databases and multi-modal Sentinel-1 and -2 time series. The temporal evolution of crop types was modeled with a linear-chain conditional random field, trained with time series of multimodal (radar and optical) satellite acquisitions and associated LPIS. Our model was tested on two study areas in France (≥ 1250 km2) which show different crop types, various parcel sizes, and agricultural practices: . the Seine et Marne and the Alpes de Haute-Provence classified accordingly to a fine national 25-class nomenclature. We first trained a Random Forest classifier without temporal structure to achieve 89.0% overall accuracy in Seine et Marne (10 classes) and 73% in Alpes de Haute-Provence (14 classes). We then demonstrated experimentally that taking into account the temporal structure of crop rotation with our model resulted in an increase of 3% to +5% in accuracy. This increase was especially important (+12%) for classes which were poorly classified without using the temporal structure. A stark positive impact was also demonstrated on permanent crops, while it was fairly limited or even detrimental for annual crops. Numéro de notice : A2020-382 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.7.431 Date de publication en ligne : 01/07/2020 En ligne : https://doi.org/10.14358/PERS.86.7.431 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95428
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 7 (July 2020) . - pp 431 - 441[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020071 SL Revue Centre de documentation Revues en salle Disponible PermalinkInternational workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)
Permalink