Détail de l'autorité
AI4GEO / Mallet, Clément
Autorités liées :
Nom :
AI4GEO
titre complet :
Automatic solution for producing 3D geospatial information
URL du projet :
|
Documents disponibles (6)



Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp 403 - 437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 403 - 437[article]
Titre : AI4GEO: A path from 3D model to digital twin Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Simon Baillarin, Auteur ; Pierre Lassalle, Auteur ; Flora Weissgerber, Auteur ; Bruno Vallet , Auteur ; Christophe Triquet, Auteur ; Gilles Foulon, Auteur ; Gaëlle Romeyer
, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : AI4GEO / Conférence : IGARSS 2022, IEEE International Geoscience And Remote Sensing Symposium 17/07/2022 22/07/2022 Kuala Lumpur Malaysie Proceedings IEEE Importance : pp 4728 - 4731 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] CityGML
[Termes IGN] données localisées 3D
[Termes IGN] jumeau numérique
[Termes IGN] segmentation sémantique
[Termes IGN] ville intelligenteRésumé : (auteur) 3D Geospatial information plays a key role in many soaring sectors such as sustainable and smart cities, climate monitoring, ecological mobility, and economic intelligence. The availability of huge volumes of satellite, airborne and insitu data now makes this production feasible at large scale. It needs nonetheless a certain level of manual intervention to secure the level of quality, which prevents mass production. This paper presents the AI4GEO program that aims at developing an end to end solution to produce automatically qualified 3D Digital model at scale together with multiple layers of information. Numéro de notice : C2022-040 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS46834.2022.9883433 Date de publication en ligne : 28/09/2022 En ligne : https://doi.org/10.1109/IGARSS46834.2022.9883433 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101768 Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
![]()
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : AI4GEO / , MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] inférence
[Termes IGN] mise à jour automatique
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 Date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]
Titre : AI4GEO: a data intelligence platform for 3D geospatial mapping Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Pierre Lassalle, Auteur ; Simon Baillarin, Auteur ; Bruno Vallet , Auteur ; Arnaud Le Bris
, Auteur ; Gaëlle Romeyer
, Auteur ; Guy Le Besnerais, Auteur ; Flora Weissgerber, Auteur ; Gilles Foulon, Auteur ; Vincent Gaudissart, Auteur ; Christophe Triquet, Auteur ; Michael Darques, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Mallet, Clément Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 817 - 823 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] jeu de données localisées
[Termes IGN] plateforme logicielle
[Termes IGN] segmentation sémantique
[Termes IGN] traitement de données localiséesRésumé : (auteur) The availability of 3D Geospatial information is a key issue for many expanding sectors such as autonomous vehicles, business intelligence and urban planning. Its production is now possible thanks to the abundance of available data (Earth observation satellite constellations, insitu data, …) but manual interventions are still needed to guarantee a high level of quality, which prevents mass production. New artificial intelligence and big data technologies adapted to 3D imagery can help to remove these obstacles. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information and new added-value services. This paper will first introduce AI4GEO initiative, context and overall objectives. It will then present the current status of the project and in particular it will focus on the innovative platform put in place to handle big 3D datasets for analytics needs and it will present the first results of 3D semantic segmentations and associated perspectives. Numéro de notice : C2021-015 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-817-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98067
Titre : A new stereo dense matching benchmark dataset for deep learning Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet
, Auteur ; Marc Pierrot-Deseilligny
, Auteur ; Ewelina Rupnik
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Mallet, Clément Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 405 - 412 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de données localisées
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] jeu de données localisées
[Termes IGN] parangonnage
[Termes IGN] photogrammétrie aérienne
[Termes IGN] reconstruction 3DRésumé : (auteur) Stereo dense matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, for example Middlebury and KITTI stereo. However, it is not easy to find a training dataset for aerial photogrammetry. Generating ground truth data for real scenes is a challenging task. In the photogrammetry community, many evaluation methods use digital surface models (DSM) to generate the ground truth disparity for the stereo pairs, but in this case interpolation may bring errors in the estimated disparity. In this paper, we publish a stereo dense matching dataset based on ISPRS Vaihingen dataset, and use it to evaluate some traditional and deep learning based methods. The evaluation shows that learning-based methods outperform traditional methods significantly when the fine tuning is done on a similar landscape. The benchmark also investigates the impact of the base to height ratio on the performance of the evaluated methods. The dataset can be found in https://github.com/whuwuteng/benchmark_ISPRS2021. Numéro de notice : C2021-012 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-405-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-405-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98066 Torch-Points3D: A modular multi-task framework for reproducible deep learning on 3D point clouds / Thomas Chaton (2020)
Permalink