Geoinformatica . vol 17 n° 2Paru le : 01/04/2013 ISBN/ISSN/EAN : 1384-6175 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
057-2013021 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierDirectional relations and frames of reference / Eliseo Clementini in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : Directional relations and frames of reference Type de document : Article/Communication Auteurs : Eliseo Clementini, Auteur Année de publication : 2013 Article en page(s) : pp 235 - 255 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] langage de requête
[Termes IGN] navigation terrestre
[Termes IGN] prise en compte du contexte
[Termes IGN] réflectance de surface
[Termes IGN] relation spatiale
[Termes IGN] repère de référence
[Termes IGN] taxinomieRésumé : (Auteur) As an intermediate category between metric and topology, directional relations are as much varied as “right of”, “before”, “between”, “in front of”, “back”, “north of”, “east of”, and so on. Directional relations are ambiguous if taken alone without the contextual information described by frames of reference. In this paper, we identify a unifying framework for directional relations and frames of reference, which shows how a directional relation with its associated frame of reference can be mapped to a projective relation of the 5-intersection model. We discuss how this knowledge can be integrated in spatial query languages. Numéro de notice : A2013-158 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-011-0147-2 Date de publication en ligne : 24/11/2011 En ligne : https://doi.org/10.1007/s10707-011-0147-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32296
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 235 - 255[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible A framework to model and manipulate constraints for over-constrained geographic applications / Wassim Jaziri in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : A framework to model and manipulate constraints for over-constrained geographic applications Type de document : Article/Communication Auteurs : Wassim Jaziri, Auteur ; Michel Mainguenaud, Auteur Année de publication : 2013 Article en page(s) : pp 257 - 284 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Caux, pays de
[Termes IGN] contrainte d'intégrité
[Termes IGN] inondation
[Termes IGN] programmation par contraintes
[Termes IGN] risque naturel
[Termes IGN] Seine-maritime (76)
[Termes IGN] simulation numérique
[Termes IGN] système d'information géographiqueRésumé : (Auteur) Geographic applications are often over-constrained because of the stakeholders’ multiple requirements and the various spatial, alphanumeric and temporal constraints to be satisfied. In most cases, solving over-constrained problems is based on the relaxation of some constraints according to values of preferences. This article proposes the modelling and the management of constraints in order to provide a framework to integrate stakeholders in the expression and the relaxation of their constraints. Three families of constraints are defined: static vs. dynamic, intra-entity vs. inter-entities and intra-instance vs. inter-instances. Constraints are modelled from two points of view: system with the complexity in time of the different involved operators and user with stakeholders’ preferences. The methodology of constraints relaxation is based on primitive, complex and derived operations. These operations allow a modification of the constraints in order to provide a relevant solution to a simulation. The developed system was applied to reduce the streaming/floods risks in the territory of Pays de Caux (Seine Maritime, France). Numéro de notice : A2013-159 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-012-0151-1 Date de publication en ligne : 09/03/2012 En ligne : https://doi.org/10.1007/s10707-012-0151-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32297
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 257 - 284[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible Footprint generation using fuzzy-neighborhood clustering / Jonathon K. Parker in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : Footprint generation using fuzzy-neighborhood clustering Type de document : Article/Communication Auteurs : Jonathon K. Parker, Auteur ; Joni A. Downs, Auteur Année de publication : 2013 Article en page(s) : pp 285 - 299 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification floue
[Termes IGN] empreinteRésumé : (Auteur) Geometric footprints, which delineate the region occupied by a spatial point pattern, serve a variety of functions in GIScience. This research explores the use of two density-based clustering algorithms for footprint generation. First, the Density-Based Spatial Clustering with Noise (DBSCAN) algorithm is used to classify points as core points, non-core points, or statistical noise; then a footprint is created from the core and non-core points in each cluster using convex hulls. Second, a Fuzzy-Neighborhood (FN)-DBSCAN algorithm, which incorporates fuzzy set theory, is used to assign points to clusters based on membership values. Then, two methods are presented for delineating footprints with FN-DBSCAN: (1) hull-based techniques and (2) contouring methods based on interpolated membership values. The latter approach offers increased flexibility for footprint generation, as it provides a continuous surface of membership values from which precise contours can be delineated. Then, a heuristic parameter selection method is described for FN-DBSCAN, and the approach is demonstrated in the context of wildlife home range estimation, where the goal is to a generate footprint of an animal’s movements from tracking data. Additionally, FN-DBSCAN is applied to produce crime footprints for a county in Florida. The results are used to guide a discussion of the relative merits of the new techniques. In summary, the fuzzy clustering approach offers a novel method of footprint generation that can be applied to characterize a variety of point patterns in GIScience. Numéro de notice : A2013-160 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s10707-012-0152-0 Date de publication en ligne : 06/03/2012 En ligne : https://doi.org/10.1007/s10707-012-0152-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32298
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 285 - 299[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible Multi-level representation of terrain features on a contour map / Eric Guilbert in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : Multi-level representation of terrain features on a contour map Type de document : Article/Communication Auteurs : Eric Guilbert, Auteur Année de publication : 2013 Article en page(s) : pp 301 - 324 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] adjacence
[Termes IGN] arbre (mathématique)
[Termes IGN] carte isoplèthe
[Termes IGN] contour
[Termes IGN] description multiniveau
[Termes IGN] détail topographique
[Termes IGN] généralisation automatique de données
[Termes IGN] représentation multipleRésumé : (Auteur) Contour lines are important for quantitatively displaying relief and identifying morphometric features on a map. Contour trees are often used to represent spatial relationships between contours and assist the user in analysing the terrain. However, automatic analysis from the contour tree is still limited as features identified on a map by sets of contours are not only characterised by local relationships between contours but also by relationships with other features at different levels of representation. In this paper, a new method based on adjacency and inclusion relationships between regions defined by sets of contours is presented. The method extracts terrain features and stores them in a feature tree providing a description of the landscape at multiple levels of detail. The method is applied to terrain analysis and generalisation of a contour map by selecting the most relevant features according to the purpose of the map. Experimental results are presented and discussed. Numéro de notice : A2013-161 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-012-0153-z Date de publication en ligne : 11/04/2012 En ligne : https://doi.org/10.1007/s10707-012-0153-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32299
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 301 - 324[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible STHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points / Hai Thanh Mai in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : STHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points Type de document : Article/Communication Auteurs : Hai Thanh Mai, Auteur ; Jaeho Kim, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 325 - 352 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données localisées
[Termes IGN] données localisées 2D
[Termes IGN] données localisées 3D
[Termes IGN] histogramme
[Termes IGN] regroupement de données
[Termes IGN] système d'information géographique
[Termes IGN] traitement de données localiséesRésumé : (Auteur) Histograms have been widely used for estimating selectivity in query optimization. In this paper, we propose a new histogram construction method for geographic data objects that are used in many real-world applications. The proposed method is based on analyses and utilization of clusters of objects that exist in a given data set, to build histograms with significantly enhanced accuracy. Our philosophy in allocating the histogram buckets is to allocate them to the subspaces that properly capture object clusters. Therefore, we first propose a procedure to find the centers of object clusters. Then, we propose an algorithm to construct the histogram buckets from these centers. The buckets are initialized from the clusters’ centers, then expanded to cover the clusters. Best expansion plans are chosen based on a notion of skewness gain. Results from extensive experiments using real-life data sets demonstrate that the proposed method can really improve the accuracy of the histograms further, when compared with the current state of the art histogram construction method for geographic data objects. Numéro de notice : A2013-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-012-0154-y Date de publication en ligne : 10/02/2012 En ligne : https://doi.org/10.1007/s10707-012-0154-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32300
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 325 - 352[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible Evolutionary search for understanding movement dynamics on mixed networks / William M. Spears in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : Evolutionary search for understanding movement dynamics on mixed networks Type de document : Article/Communication Auteurs : William M. Spears, Auteur ; Steven D. Prager, Auteur Année de publication : 2013 Article en page(s) : pp 353 - 385 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme évolutionniste
[Termes IGN] données localisées
[Termes IGN] données localisées dynamiques
[Termes IGN] navigation
[Termes IGN] raisonnement
[Termes IGN] recherche d'information géographiqueRésumé : (Auteur) This paper describes an approach to using evolutionary algorithms for reasoning about paths through network data. The paths investigated in the context of this research are functional paths wherein the characteristics (e.g., path length, morphology, location) of the path are integral to the objective purpose of the path. Using two datasets of combined surface and road networks, the research demonstrates how an evolutionary algorithm can be used to reason about functional paths. We present the algorithm approach, the parameters and fitness function that drive the functional aspects of the path, and an approach for using the algorithm to respond to dynamic changes in the search space. The results of the search process are presented in terms of the overall success based on the response of the search to variations in the environment and through the use of an occupancy grid characterizing the overall search process. The approach offers a great deal of flexibility over more conventional heuristic path finding approaches and offers additional perspective on dynamic network analysis. Numéro de notice : A2013-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-012-0155-x Date de publication en ligne : 11/04/2012 En ligne : https://doi.org/10.1007/s10707-012-0155-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32301
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 353 - 385[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible Spatio-temporal polygonal clustering with space and time as first-class citizens / Deepti Joshi in Geoinformatica, vol 17 n° 2 (April 2013)
[article]
Titre : Spatio-temporal polygonal clustering with space and time as first-class citizens Type de document : Article/Communication Auteurs : Deepti Joshi, Auteur ; Ashok Samal, Auteur ; Leen-Kiat Soh, Auteur Année de publication : 2013 Article en page(s) : pp 387 - 412 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données spatiotemporelles
[Termes IGN] exploration de données
[Termes IGN] polygonaleRésumé : (Auteur) Detecting spatio-temporal clusters, i.e. clusters of objects similar to each other occurring together across space and time, has important real-world applications such as climate change, drought analysis, detection of outbreak of epidemics (e.g. bird flu), bioterrorist attacks (e.g. anthrax release), and detection of increased military activity. Research in spatio-temporal clustering has focused on grouping individual objects with similar trajectories, detecting moving clusters, or discovering convoys of objects. However, most of these solutions are based on using a piece-meal approach where snapshot clusters are formed at each time stamp and then the series of snapshot clusters are analyzed to discover moving clusters. This approach has two fundamental limitations. First, it is point-based and is not readily applicable to polygonal datasets. Second, its static analysis approach at each time slice is susceptible to inaccurate tracking of dynamic cluster especially when clusters change over both time and space. In this paper we present a spatio-temporal polygonal clustering algorithm known as the Spatio-Temporal Polygonal Clustering (STPC) algorithm. STPC clusters spatial polygons taking into account their spatial and topological properties, treating time as a first-class citizen, and integrating density-based clustering with moving cluster analysis. Our experiments on the drought analysis application, flu spread analysis and crime cluster detection show the validity and robustness of our algorithm in an important geospatial application. Numéro de notice : A2013-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-012-0157-8 Date de publication en ligne : 15/03/2012 En ligne : https://doi.org/10.1007/s10707-012-0157-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32302
in Geoinformatica > vol 17 n° 2 (April 2013) . - pp 387 - 412[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2013021 RAB Revue Centre de documentation En réserve L003 Disponible