Remote sensing . vol 9 n° 3Paru le : 01/03/2017 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas / Martin Weinmann in Remote sensing, vol 9 n° 3 (March 2017)
[article]
Titre : A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas Type de document : Article/Communication Auteurs : Martin Weinmann, Auteur ; Michael Weinmann, Auteur ; Clément Mallet , Auteur ; Mathieu Brédif , Auteur Année de publication : 2017 Projets : IQmulus / Métral, Claudine Article en page(s) : pp 277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de décalage moyen
[Termes IGN] arbre (flore)
[Termes IGN] classification
[Termes IGN] Delft (Pays-Bas)
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] voxel
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, we present a novel framework for detecting individual trees in densely sampled 3D point cloud data acquired in urban areas. Given a 3D point cloud, the objective is to assign point-wise labels that are both class-aware and instance-aware, a task that is known as instance-level segmentation. To achieve this, our framework addresses two successive steps. The first step of our framework is given by the use of geometric features for a binary point-wise semantic classification with the objective of assigning semantic class labels to irregularly distributed 3D points, whereby the labels are defined as “tree points” and “other points”. The second step of our framework is given by a semantic segmentation with the objective of separating individual trees within the “tree points”. This is achieved by applying an efficient adaptation of the mean shift algorithm and a subsequent segment-based shape analysis relying on semantic rules to only retain plausible tree segments. We demonstrate the performance of our framework on a publicly available benchmark dataset, which has been acquired with a mobile mapping system in the city of Delft in the Netherlands. This dataset contains 10.13 M labeled 3D points among which 17.6 % are labeled as “tree points”. The derived results clearly reveal a semantic classification of high accuracy (up to 90.77 %) and an instance-level segmentation of high plausibility, while the simplicity, applicability and efficiency of the involved methods even allow applying the complete framework on a standard laptop computer with a reasonable processing time (less than 2.5 h) Numéro de notice : A2017-140 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs9030277 Date de publication en ligne : 16/03/2017 En ligne : http://doi.org/10.3390/rs9030277 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84614
in Remote sensing > vol 9 n° 3 (March 2017) . - pp 277[article]