Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 83 n° 10Paru le : 01/10/2017 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA geometric correspondence feature based-mismatch removal in vision based-mapping and navigation / Zeyu Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
[article]
Titre : A geometric correspondence feature based-mismatch removal in vision based-mapping and navigation Type de document : Article/Communication Auteurs : Zeyu Li, Auteur ; Jinling Wang, Auteur ; Charles Toth, Auteur Année de publication : 2017 Article en page(s) : pp 693 - 704 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] appariement de données localisées
[Termes IGN] attribut géomètrique
[Termes IGN] erreur de positionnement
[Termes IGN] regroupement de données
[Termes IGN] vision par ordinateurRésumé : (auteur) Images with large-area repetitive texture, significant viewpoint, and illumination changes as well as occlusions often induce high-percentage keypoint mismatches, affecting the performance of vision-based mapping and navigation. Traditional methods for mismatch elimination tend to fail when the percentage of mismatches is high. In order to remove mismatches effectively, a new geometry-based approach is proposed in this paper, where Geometric Correspondence Feature (GCF) is used to represent the tentative correspondence. Based on the clustering property of GCFs from correct matches, a new clustering algorithm is developed to identify the cluster formed by the correct matches.
With the defined quality factor calculated from the identified cluster, a Progressive Sample Consensus (PROSAC) process integrated with hyperplane-model is employed to further eliminate mismatches. Extensive experiments based on both simulated and real images in indoor and outdoor environments have demonstrated that the proposed approach can significantly improve the performance of mismatch elimination in the presence of high-percentage mismatches.Numéro de notice : A2017-690 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.14358/PERS.83.10.693 En ligne : https://doi.org/10.14358/PERS.83.10.693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87856
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 10 (October 2017) . - pp 693 - 704[article]Registration of images to Lidar and GIS data without establishing explicit correspondences / Gabor Barsai in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
[article]
Titre : Registration of images to Lidar and GIS data without establishing explicit correspondences Type de document : Article/Communication Auteurs : Gabor Barsai, Auteur ; Alper Yilmaz, Auteur ; Sudhagar Nagarajan, Auteur ; Panu Srestasathiern, Auteur Année de publication : 2017 Article en page(s) : pp 705 - 716 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] contour
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion d'images
[Termes IGN] image aérienne oblique
[Termes IGN] méthode de réduction d'énergie
[Termes IGN] superposition d'images
[Termes IGN] variable aléatoireRésumé : (auteur) Recovering the camera orientation is a fundamental problem in photogrammetry for precision 3D recovery, orthophoto generation, and image registration. In this paper, we achieve this goal by fusing the image information with information extracted from different modalities, including lidar and GIS. In contrast to other approaches, which require feature correspondences, our approach exploits edges across the modalities without the necessity to explicitly establish correspondences. In the proposed approach, extracted edges from different modalities are not required to have analytical forms. This flexibility is achieved by minimizing a new cost function using a Bayesian approach, which takes the Euclidean distances between the projected edges extracted from the other data source and the edges extracted from the reference image as its random variable. The proposed formulation minimizes the overall distances between the sets of edges iteratively, such that the end product results in the correct camera parameters for the reference image as well as matching features across the modalities. The initial solution can be obtained from GPS/IMU data. The formulation is shown to successfully handle noise and missing observations in edges. Point matching methods may fail for oblique images, especially high oblique images. We eliminate the requirement for exact point-to-point matching. The feasibility of the method is experimented with nadir and oblique images. Numéro de notice : A2017-691 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.10.705 En ligne : https://doi.org/10.14358/PERS.83.10.705 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87858
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 10 (October 2017) . - pp 705 - 716[article]