|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
| ![]() |
Dépouillements


Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification / Yanqiao Chen in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification Type de document : Article/Communication Auteurs : Yanqiao Chen, Auteur ; Licheng Jiao, Auteur ; Yangyang Li, Auteur ; Jin Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 6683 - 6694 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image radar moirée
[Termes IGN] Perceptron multicouche
[Termes IGN] polarimétrie radarRésumé : (Auteur) Polarimetric synthetic aperture radar (PolSAR) image classification is a vital application in remote sensing image processing. In general, PolSAR image classification is actually a high-dimensional nonlinear mapping problem. The methods based on sparse representation and deep learning have shown a great potential for PolSAR image classification. Therefore, a novel PolSAR image classification method based on multilayer projective dictionary pair learning (MDPL) and sparse auto encoder (SAE) is proposed in this paper. First, MDPL is used to extract features, and the abstract degree of the extracted features is high. Second, in order to get the nonlinear relationship between elements of feature vectors in an adaptive way, SAE is also used in this paper. Three PolSAR images are used to test the effectiveness of our method. Compared with several state-of-the-art methods, our method achieves very competitive results in PolSAR image classification. Numéro de notice : A2017-764 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2727067 En ligne : https://doi.org/10.1109/TGRS.2017.2727067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88800
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6683 - 6694[article]Small reflectors for ground motion monitoring with InSAR / Prabu Dheenathayalan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Small reflectors for ground motion monitoring with InSAR Type de document : Article/Communication Auteurs : Prabu Dheenathayalan, Auteur ; Miguel Caro Cuenca, Auteur ; Peter Hoogeboom, Auteur ; Ramon F. Hanssen, Auteur Année de publication : 2017 Article en page(s) : pp 6703 - 6712 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coin réflecteur
[Termes IGN] déformation de la croute terrestre
[Termes IGN] fouillis d'échos
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] rapport signal sur bruit
[Termes IGN] surveillance géologiqueRésumé : (Auteur) In recent years, synthetic aperture radar interferometry has become a recognized geodetic tool for observing ground motion. For monitoring areas with low density of coherent targets, artificial corner reflectors (CRs) are usually introduced. The required size of a reflector depends on radar wavelength and resolution and on the required deformation accuracy. CRs have been traditionally used to provide a high signal-to-clutter ratio (SCR). However, large dimensions can make the reflector bulky, difficult to install and maintain. Furthermore, if a large number of reflectors are needed for long infrastructure, such as vegetation-covered dikes, the total price of the reflectors can become unaffordable. On the other hand, small reflectors have the advantage of easy installation and low cost. In this paper, we design and study the use of small reflectors with low SCR for ground motion monitoring. In addition, we propose a new closed-form expression to estimate the interferometric phase precision of resolution cells containing a (strong or weak) point target and a clutter. Through experiments, we demonstrate that the small reflectors can also deliver displacement estimates with an accuracy of a few millimeters. To achieve this, we apply a filtering method for reducing clutter noise. Numéro de notice : A2017-765 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2731424 En ligne : https://doi.org/10.1109/TGRS.2017.2731424 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88802
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6703 - 6712[article]Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification / Yiting Tao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification Type de document : Article/Communication Auteurs : Yiting Tao, Auteur ; Miaozhong Xu, Auteur ; Fan Zhang, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 6805 - 6823 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] déconvolution
[Termes IGN] image Geoeye
[Termes IGN] image Quickbird
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) As the acquisition of very high resolution (VHR) satellite images becomes easier owing to technological advancements, ever more stringent requirements are being imposed on automatic image interpretation. Moreover, per-pixel classification has become the focus of research interests in this regard. However, the efficient and effective processing and the interpretation of VHR satellite images remain a critical task. Convolutional neural networks (CNNs) have recently been applied to VHR satellite images with considerable success. However, the prevalent CNN models accept input data of fixed sizes and train the classifier using features extracted directly from the convolutional stages or the fully connected layers, which cannot yield pixel-to-pixel classifications. Moreover, training a CNN model requires large amounts of labeled reference data. These are challenging to obtain because per-pixel labeled VHR satellite images are not open access. In this paper, we propose a framework called the unsupervised-restricted deconvolutional neural network (URDNN). It can solve these problems by learning an end-to-end and pixel-to-pixel classification and handling a VHR classification using a fully convolutional network and a small number of labeled pixels. In URDNN, supervised learning is always under the restriction of unsupervised learning, which serves to constrain and aid supervised training in learning more generalized and abstract feature. To some degree, it will try to reduce the problems of overfitting and undertraining, which arise from the scarcity of labeled training data, and to gain better classification results using fewer training samples. It improves the generality of the classification model. We tested the proposed URDNN on images from the Geoeye and Quickbird sensors and obtained satisfactory results with the highest overall accuracy (OA) achieved as 0.977 and 0.989, respectively. Experiments showed that the combined effects of additional kernels and stages may have produced better results, and two-stage URDNN consistently produced a more stable result. We compared URDNN with four methods and found that with a small ratio of selected labeled data items, it yielded the highest and most stable results, whereas the accuracy values of the other methods quickly decreased. For some categories with fewer training pixels, accuracy for categories from other methods was considerably worse than that in URDNN, with the largest difference reaching almost 10%. Hence, the proposed URDNN can successfully handle the VHR image classification using a small number of labeled pixels. Furthermore, it is more effective than state-of-the-art methods. Numéro de notice : A2017-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2734697 En ligne : https://doi.org/10.1109/TGRS.2017.2734697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88803
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6805 - 6823[article]Multimorphological superpixel model for hyperspectral image classification / Tianzhu Liu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Multimorphological superpixel model for hyperspectral image classification Type de document : Article/Communication Auteurs : Tianzhu Liu, Auteur ; Yanfeng Gu, Auteur ; Jocelyn Chanussot, Auteur ; Mauro Dalla Mura, Auteur Année de publication : 2017 Article en page(s) : pp 6950 - 6963 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) With the development of hyperspectral sensors, nowadays, we can easily acquire large amount of hyperspectral images (HSIs) with very high spatial resolution, which has led to a better identification of relatively small structures. Owing to the high spatial resolution, there are much less mixed pixels in the HSIs, and the boundaries between these categories are much clearer. However, the high spatial resolution also leads to complex and fine geometrical structures and high inner-class variability, which make the classification results very “noisy.” In this paper, we propose a multimorphological superpixel (MMSP) method to extract the spectral and spatial features and address the aforementioned problems. To reduce the difference within the same class and obtain multilevel spatial information, morphological features (multistructuring element extended morphological profile or multiattribute filter extended multi-attribute profiles) are first obtained from the original HSI. After that, simple linear iterative clustering segmentation method is performed on each morphological feature to acquire the MMSPs. Then, uniformity constraint is used to merge the MMSPs belonging to the same class which can avoid introducing the information from different classes and acquire spatial structures at object level. Subsequently, mean filtering is utilized to extract the spatial features within and among MMSPs. At last, base kernels are obtained from the spatial features and original HSI, and several multiple kernel learning methods are used to obtain the optimal kernel to incorporate into the support vector machine. Experiments conducted on three widely used real HSIs and compared with several well-known methods demonstrate the effectiveness of the proposed model. Numéro de notice : A2017-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2737037 En ligne : https://doi.org/10.1109/TGRS.2017.2737037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88806
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6950 - 6963[article]Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network / Wei Zhao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network Type de document : Article/Communication Auteurs : Wei Zhao, Auteur ; Zhirui Wang, Auteur ; Maoguo Gong, Auteur ; Jia Liu, Auteur Année de publication : 2017 Article en page(s) : pp 7066 - 7080 Note générale : Bibliograpie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection de changementRésumé : (Auteur) With the application requirement, the technique for change detection based on heterogeneous remote sensing images is paid more attention. However, detecting changes between two heterogeneous images is challenging as they cannot be compared in low-dimensional space. In this paper, we construct an approximately symmetric deep neural network with two sides containing the same number of coupled layers to transform the two images into the same feature space. The two images are connected with the two sides and transformed into the same feature space, in which their features are more discriminative and the difference image can be generated by comparing paired features pixel by pixel. The network is first built by stacked restricted Boltzmann machines, and then, the parameters are updated in a special way based on clustering. The special way, motivated by that two heterogeneous images share the same reality in unchanged areas and retain respective properties in changed areas, shrinks the distance between paired features transformed from unchanged positions, and enlarges the distance between paired features extracted from changed positions. It is achieved through introducing two types of labels and updating parameters by adaptively changed learning rate. This is different from the existing methods based on deep learning that just do operations on positions predicted to be unchanged and extract only one type of labels. The whole process is completely unsupervised without any priori knowledge. Besides, the method can also be applied to homogeneous images. We test our method on heterogeneous images and homogeneous images. The proposed method achieves quite high accuracy. Numéro de notice : A2017-768 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2739800 En ligne : https://doi.org/10.1109/TGRS.2017.2739800 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88807
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 7066 - 7080[article]High-resolution aerial image labeling with convolutional neural networks / Emmanuel Maggiori in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : High-resolution aerial image labeling with convolutional neural networks Type de document : Article/Communication Auteurs : Emmanuel Maggiori, Auteur ; Yuliya Tarabalka, Auteur ; Guillaume Charpiat, Auteur ; Pierre Alliez, Auteur Année de publication : 2017 Article en page(s) : pp 7092 - 7103 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] image aérienne
[Termes IGN] indexation sémantique
[Termes IGN] inférence sémantique
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) The problem of dense semantic labeling consists in assigning semantic labels to every pixel in an image. In the context of aerial image analysis, it is particularly important to yield high-resolution outputs. In order to use convolutional neural networks (CNNs) for this task, it is required to design new specific architectures to provide fine-grained classification maps. Many dense semantic labeling CNNs have been recently proposed. Our first contribution is an in-depth analysis of these architectures. We establish the desired properties of an ideal semantic labeling CNN, and assess how those methods stand with regard to these properties. We observe that even though they provide competitive results, these CNNs often underexploit properties of semantic labeling that could lead to more effective and efficient architectures. Out of these observations, we then derive a CNN framework specifically adapted to the semantic labeling problem. In addition to learning features at different resolutions, it learns how to combine these features. By integrating local and global information in an efficient and flexible manner, it outperforms previous techniques. We evaluate the proposed framework and compare it with state-of-the-art architectures on public benchmarks of high-resolution aerial image labeling. Numéro de notice : A2017-769 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2740362 En ligne : https://doi.org/10.1109/TGRS.2017.2740362 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88808
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 7092 - 7103[article]Complex-valued convolutional neural network and its application in polarimetric SAR image classification / Zhimian Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
![]()
[article]
Titre : Complex-valued convolutional neural network and its application in polarimetric SAR image classification Type de document : Article/Communication Auteurs : Zhimian Zhang, Auteur ; Haipeng Wang, Auteur ; Feng Xu, Auteur ; Ya-Qiu Jin, Auteur Année de publication : 2017 Article en page(s) : pp 7177 - 7188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage dirigé
[Termes IGN] données polarimétriques
[Termes IGN] image radar moirée
[Termes IGN] polarimétrie radar
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Following the great success of deep convolutional neural networks (CNNs) in computer vision, this paper proposes a complex-valued CNN (CV-CNN) specifically for synthetic aperture radar (SAR) image interpretation. It utilizes both amplitude and phase information of complex SAR imagery. All elements of CNN including input-output layer, convolution layer, activation function, and pooling layer are extended to the complex domain. Moreover, a complex backpropagation algorithm based on stochastic gradient descent is derived for CV-CNN training. The proposed CV-CNN is then tested on the typical polarimetric SAR image classification task which classifies each pixel into known terrain types via supervised training. Experiments with the benchmark data sets of Flevoland and Oberpfaffenhofen show that the classification error can be further reduced if employing CV-CNN instead of conventional real-valued CNN with the same degrees of freedom. The performance of CV-CNN is comparable to that of existing state-of-the-art methods in terms of overall classification accuracy. Numéro de notice : A2017-770 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2743222 En ligne : https://doi.org/10.1109/TGRS.2017.2743222 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88810
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 7177 - 7188[article]