|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Estimation of antenna phase center offset for BDS IGSO and MEO satellites / Guanwen Huang in GPS solutions, vol 22 n° 2 (April 2018)
![]()
[article]
Titre : Estimation of antenna phase center offset for BDS IGSO and MEO satellites Type de document : Article/Communication Auteurs : Guanwen Huang, Auteur ; Xingyuan Yan, Auteur ; Zhang Qian, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 22 - 49 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] centre de phase
[Termes IGN] constellation BeiDou
[Termes IGN] orbite géostationnaire
[Termes IGN] orbitographieRésumé : (Auteur) The BeiDou satellite navigation system (BDS) is different from other global navigation satellite systems (GNSSs) because of its special constellation, which consists of satellites in geostationary earth orbit, inclined geosynchronous earth orbit (IGSO), and medium earth orbit (MEO). Compared to MEO satellites, the observations of IGSO satellites cover only a small range of nadir angles. Therefore, the estimation of phase center offsets (PCOs) suffers from high correlation with other estimation parameters. We have estimated the phase center offsets for BeiDou IGSO and MEO satellites with a direct PCO parameters model, and constraints are applied to cope with the correlation between the PCOs and other parameters. Validation shows that the estimated PCO parameters could be used to improve the accuracy of orbit and clock offset overlaps. Compared with the Multi-GNSS Experiment antenna phase center correction model, the average improvements of the proposed method for along-track, cross-track, and radial components are 19 mm (31%), 5 mm (14%), and 2 mm (15%) for MEO satellites, and 13 mm (17%), 12 mm (21%), and 5 mm (19%) for IGSO satellites. For clock offset overlaps, average improvements of standard deviation and root mean square (RMS) are 0.03 ns (20%) and 0.03 ns (12%), respectively. The RMS of precise coordinates in the BDS-only positioning was also improved significantly with a level of 24 mm (30%) in the up-direction. Finally, the overall uncertainty of the estimated results is discussed. Numéro de notice : A2018-159 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0716-z Date de publication en ligne : 24/02/2018 En ligne : https://doi.org/10.1007/s10291-018-0716-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89781
in GPS solutions > vol 22 n° 2 (April 2018) . - pp 22 - 49[article]Carrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling / Anna Krypiak-Gregorczyk in GPS solutions, vol 22 n° 2 (April 2018)
![]()
[article]
Titre : Carrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling Type de document : Article/Communication Auteurs : Anna Krypiak-Gregorczyk, Auteur ; Pawel Wielgosz, Auteur Année de publication : 2018 Article en page(s) : pp 22 - 45 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] combinaison linéaire
[Termes IGN] erreur systématique
[Termes IGN] modèle ionosphérique
[Termes IGN] phase
[Termes IGN] positionnement par GNSS
[Termes IGN] retard ionosphèrique
[Termes IGN] signal GNSS
[Termes IGN] teneur totale en électrons
[Vedettes matières IGN] Traitement de données GNSSRésumé : (Auteur) The ionosphere can be modeled and studied using multi-frequency GNSS signals and their geometry-free linear combination. Therefore, a number of GNSS-derived ionospheric models have been developed and applied in a broad range of applications. However, due to the complexity of estimating the carrier phase ambiguities, most of these models are based on low-accuracy carrier phase smoothed pseudorange data. This, in turn, critically limits their accuracy and applicability. Therefore, we present a new methodology of estimating the phase bias of the scaled L1 and L2 carrier phase difference which is a function of the ambiguities, the ionospheric delay, and hardware delays. This methodology is suitable for ionospheric modeling at regional and continental scales. In addition, we present its evaluation under varying ionospheric conditions. The test results show that the carrier phase bias of geometry-free linear combination can be estimated with a very high accuracy, which consequently allows for calculating ionospheric TEC with the uncertainty lower than 1.0 TECU. This high accuracy makes the resulting ionosphere model suitable for improving GNSS positioning for high-precision applications in geosciences. Numéro de notice : A2018-160 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0711-4 Date de publication en ligne : 16/02/2018 En ligne : https://doi.org/10.1007/s10291-018-0711-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89783
in GPS solutions > vol 22 n° 2 (April 2018) . - pp 22 - 45[article]