|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Differential positioning based on the orthogonal transformation algorithm with GNSS multi-system / Xiao Liang in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : Differential positioning based on the orthogonal transformation algorithm with GNSS multi-system Type de document : Article/Communication Auteurs : Xiao Liang, Auteur ; Zhigang Huang, Auteur ; Honglei Qin, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] ambiguïté entière
[Termes IGN] erreur instrumentale
[Termes IGN] erreur systématique
[Termes IGN] filtre de Kalman
[Termes IGN] méthode des moindres carrés
[Termes IGN] positionnement différentiel
[Termes IGN] résolution d'ambiguïté
[Termes IGN] simple différence
[Vedettes matières IGN] Traitement de données GNSSRésumé : (Auteur) Combining global navigation satellite systems (GNSSs) will significantly increase the number of visible satellites and, thus, will improve the geometry of observed satellites, resulting in improved positioning reliability and accuracy. We focus on GNSS multi-system differential positioning based on a single-system orthogonal transformation algorithm. The orthogonal transformation algorithm using single-difference measurements is proposed to avoid the high correlation between measurements and the unnecessary prominence to the reference satellite in double-difference positioning. In addition, the algorithm uses a more straightforward recursive least squares method to avoid the effect of uncertainties of the Kalman filter. We discuss the model differences between combined system positioning and single-system positioning and verify that the combining observations of different systems should start to be used after clock biases have been reduced, respectively. Moreover, as to rising and setting of satellites in multi-system differential positioning, we propose to use matrix transform to separate the setting satellites of combined systems at an epoch. This can avoid the correlation of initial integer ambiguity vectors of different systems. The experimental results show that the proposed method can handle the change of satellites automatically and combine multiple systems for reliable and accuracy differential positioning. The method especially outperforms the basic single-system orthogonal transformation positioning and traditional multi-system double-difference positioning in a complex environment. Numéro de notice : A2018-371 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0754-6 Date de publication en ligne : 02/07/2018 En ligne : https://doi.org/10.1007/s10291-018-0754-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90763
in GPS solutions > vol 22 n° 3 (July 2018)[article]Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS / Wenfeng Nie in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS Type de document : Article/Communication Auteurs : Wenfeng Nie, Auteur ; Tianhe Xu, Auteur ; Adria Rovira-Garcia, Auteur ; José Miguel Juan Zornoza, Auteur ; Jaume Sanz, Auteur ; Guillermo Gonzalez-Casado, Auteur ; Chen Wu, Auteur ; Guochang Xu, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] code GPS
[Termes IGN] coordonnées GPS
[Termes IGN] erreur systématique
[Termes IGN] étalonnage des données
[Termes IGN] station permanente
[Termes IGN] teneur totale en électronsMots-clés libres : differential code bias Résumé : (Auteur) The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU. Numéro de notice : A2018-372 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0753-7 Date de publication en ligne : 26/06/2018 En ligne : https://doi.org/10.1007/s10291-018-0753-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90766
in GPS solutions > vol 22 n° 3 (July 2018)[article]A two-stage tropospheric correction model combining data from GNSS and numerical weather model / Jan Douša in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : A two-stage tropospheric correction model combining data from GNSS and numerical weather model Type de document : Article/Communication Auteurs : Jan Douša, Auteur ; Michal Elias, Auteur ; Pavel Vaclavovic, Auteur ; Krystof Eben, Auteur ; Pavel Krč, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] correction troposphérique
[Termes IGN] données GNSS
[Termes IGN] données météorologiques
[Termes IGN] gradient de troposphère
[Termes IGN] modèle météorologique
[Termes IGN] retard hydrostatique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station permanenteRésumé : (Auteur) We have developed a new concept for providing tropospheric augmentation corrections. The two-stage correction model combines data from a Numerical Weather Model (NWM) and precise ZTDs estimated from Global Navigation Satellite System (GNSS) permanent stations in regional networks. The first-stage correction is generated using the background NWM forecast only. The second-stage correction results from an optimal combination of the background model data and GNSS (near) real-time tropospheric products. The optimum correction is achieved when using NWM for the hydrostatic delay modeling and for vertical scaling, while GNSS products are used for correcting the non-hydrostatic delay. The method is assessed in several variants including study of the combination of NWM and GNSS data, spatial densification of the original NWM grid, and GNSS ZTD densification using tropospheric linear horizontal gradients. The first-stage correction can be characterized by overall accuracy of about 10 mm for ZTD (1-sigma). The second-stage correction supported with GNSS tropospheric products improved the first-stage correction by a factor of 2–4 in terms of the ZTD accuracy and by a factor of 2.5 in terms of its spatio-temporal stability. Numéro de notice : A2018-373 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0742-x Date de publication en ligne : 29/05/2018 En ligne : https://doi.org/10.1007/s10291-018-0742-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90767
in GPS solutions > vol 22 n° 3 (July 2018)[article]A sequential network approach for estimating GPS satellite phase biases at the PPP-AR producer-side / Omid Kamali in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : A sequential network approach for estimating GPS satellite phase biases at the PPP-AR producer-side Type de document : Article/Communication Auteurs : Omid Kamali, Auteur ; Marc Cocard, Auteur ; Rock Santerre, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GPS
[Termes IGN] erreur systématique
[Termes IGN] phase GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] station permanente
[Vedettes matières IGN] Traitement de données GNSSRésumé : (Auteur) Ambiguity resolution (AR) in precise point positioning (PPP) requires precise satellite orbit, clocks, and phase biases corrections. Satellite phase biases are fractional hardware corrections which help to retrieve the un-differenced integer carrier phase ambiguities. Satellite corrections can be obtained from the international GNSS service (IGS) or estimated by correction providers called producer-side. We introduce a new PPP-AR observation model and a new sequential network algorithm (SNA) to estimate satellite phase biases. The new model is fully compatible with standard IGS satellite correction products, and it takes advantage of currently available IGS global ionosphere maps to improve the stability of corrections estimation. Furthermore, the proposed model is full-rank per-frequency and per-site and this method simplifies the integration of any additional frequency or site observables in the system of equations. The per-site satellite phase biases method allows users to customize their network solution. In many cases, users only have to estimate the phase biases of a few satellites estimated by few stations to resolve ambiguities of their observed satellites. The novel two-step algorithm provides a good balance between the computational burden, the computer memory load, the efficiency of handling parameters, and the precise estimation of correction parameters. The proposed PPP-AR model and the SNA performance is then validated by estimating satellite phase biases with 1 year of GPS data from a sub-network of IGS stations. A rigorous a posteriori statistical test is performed using data from an independent GPS network. As a result, the precision of WL and L1 ambiguities was improved significantly with the confidence level of P > 99.99% by applying the estimated phase bias corrections to phase observables. Numéro de notice : A2018-374 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0724-z Date de publication en ligne : 11/04/2018 En ligne : https://doi.org/10.1007/s10291-018-0724-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90778
in GPS solutions > vol 22 n° 3 (July 2018)[article]Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination / Zhouzheng Gao in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination Type de document : Article/Communication Auteurs : Zhouzheng Gao, Auteur ; Maorong Ge, Auteur ; You Li, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] centrale inertielle
[Termes IGN] données BeiDou
[Termes IGN] données Galileo
[Termes IGN] données GLONASS
[Termes IGN] données GNSS
[Termes IGN] données GPS
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] odomètre
[Termes IGN] orientation du capteur
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnementRésumé : (Auteur) To upgrade the positioning accuracy, re-initialization speed, and attitude determination performance of precise point positioning (PPP) in dynamic applications, we proposed a multi-sensor fusion system consisting of four global navigation satellite systems (GNSSs), namely GPS, BDS, Galileo, and GLONASS, several low-cost inertial sensors, and an odometer. The study shows that the performance of PPP in terms of continuity, reliability, stability, and re-initialization speed improves by such a multi-sensor fusion system. This manifests itself in a significantly increased accuracy. For position solutions, compared to un-aided PPP solutions, the improvements achieved using low-cost inertial navigation system (INS) are about 36.4, 38.7, and 31.3% in the north, east, and vertical components, respectively, and the improvement using odometer are about 1.58, 0.35, and 4.32% relative to the INS-aided PPP solutions. Moreover, using the odometer can provide more than 2.1, 1.4, and 50.6% attitude improvements for roll, pitch, and heading angles compared to the attitude solutions obtained from the INS-aided PPP system. Under GNSS outage conditions, the mean position improvements using the odometer are about 2.3, 1.8, and 8.7%, with maximum increases of 74.6, 74.7, and 28.3%, and the average attitude improvements are about 4.7, 5.4, and 3.3%, with maximum increases of 36.4, 31.7, and 28.9%, respectively. This means that the odometer can enhance the performance of PPP and PPP/INS integration in challenging dynamic conditions. Numéro de notice : A2018-375 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0725-y Date de publication en ligne : 05/04/2018 En ligne : https://doi.org/10.1007/s10291-018-0725-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90779
in GPS solutions > vol 22 n° 3 (July 2018)[article]