ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 141Paru le : 01/07/2018 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2018071 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2018073 | DEP-EXM | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2018072 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierA fully automatic approach to register mobile mapping and airborne imagery to support the correction of plateform trajectories in GNSS-denied urban areas / Phillipp Jende in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : A fully automatic approach to register mobile mapping and airborne imagery to support the correction of plateform trajectories in GNSS-denied urban areas Type de document : Article/Communication Auteurs : Phillipp Jende, Auteur ; Francesco Nex, Auteur ; Markus Gerke, Auteur ; M. George Vosselman, Auteur Année de publication : 2018 Article en page(s) : pp 86 - 99 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement géométrique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Wallis
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] image aérienne
[Termes IGN] image terrestre
[Termes IGN] orientation d'image
[Termes IGN] orthoimage
[Termes IGN] point d'appui
[Termes IGN] précision décimétrique
[Termes IGN] système de numérisation mobile
[Termes IGN] zone urbaineRésumé : (Auteur) Mobile Mapping (MM) solutions have become a significant extension to traditional data acquisition methods over the last years. Independently from the sensor carried by a platform, may it be laser scanners or cameras, high-resolution data postings are opposing a poor absolute localisation accuracy in urban areas due to GNSS occlusions and multipath effects. Potentially inaccurate position estimations are propagated by IMUs which are furthermore prone to drift effects. Thus, reliable and accurate absolute positioning on a par with MM's high-quality data remains an open issue. Multiple and diverse approaches have shown promising potential to mitigate GNSS errors in urban areas, but cannot achieve decimetre accuracy, require manual effort, or have limitations with respect to costs and avail-ability. This paper presents a fully automatic approach to support the correction of MM imaging data based on correspondences with airborne nadir images. These correspondences can be employed to correct the MM plat-form's orientation by an adjustment solution. Unlike MM as such, aerial images do not suffer from GNSS oc-clusions, and their accuracy is usually verified by employing well-established methods using ground control points. However, a registration between MM and aerial images is a non-standard matching scenario, and requires several strategies to yield reliable and accurate correspondences. Scale, perspective and content strongly vary between both image sources, thus traditional feature matching methods may fail. To this end, the registration process is designed to focus on common and clearly distinguishable elements, such as road markings, manholes, or kerbstones. With a registration accuracy of about 98%, reliable tie information between MM and aerial data can be derived. Even though, the adjustment strategy is not covered in its entirety in this paper, accuracy results after adjustment will be presented. It will be shown that a decimetre accuracy is well achievable in a real data test scenari Numéro de notice : A2018-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.017 Date de publication en ligne : 30/04/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90397
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 86 - 99[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A review of accuracy assesment for object-based image analysis: from per pixel to per-polygon approaches [review article] / Su Ye in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : A review of accuracy assesment for object-based image analysis: from per pixel to per-polygon approaches [review article] Type de document : Article/Communication Auteurs : Su Ye, Auteur ; Robert Gilmore Pontius, Auteur ; Rahul Rakshit, Auteur Année de publication : 2018 Article en page(s) : pp 137 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification automatique
[Termes IGN] classification pixellaire
[Termes IGN] échantillonnage de données
[Termes IGN] estimation de précision
[Termes IGN] polygoneRésumé : (Editeur) Object-based image analysis (OBIA) has gained widespread popularity for creating maps from remotely sensed data. Researchers routinely claim that OBIA procedures outperform pixel-based procedures; however, it is not immediately obvious how to evaluate the degree to which an OBIA map compares to reference information in a manner that accounts for the fact that the OBIA map consists of objects that vary in size and shape. Our study reviews 209 journal articles concerning OBIA published between 2003 and 2017. We focus on the three stages of accuracy assessment: (1) sampling design, (2) response design and (3) accuracy analysis. First, we report the literature’s overall characteristics concerning OBIA accuracy assessment. Simple random sampling was the most used method among probability sampling strategies, slightly more than stratified sampling. Office interpreted remotely sensed data was the dominant reference source. The literature reported accuracies ranging from 42% to 96%, with an average of 85%. A third of the articles failed to give sufficient information concerning accuracy methodology such as sampling scheme and sample size. We found few studies that focused specifically on the accuracy of the segmentation. Second, we identify a recent increase of OBIA articles in using per-polygon approaches compared to per-pixel approaches for accuracy assessment. We clarify the impacts of the per-pixel versus the per-polygon approaches respectively on sampling, response design and accuracy analysis. Our review defines the technical and methodological needs in the current per-polygon approaches, such as polygon-based sampling, analysis of mixed polygons, matching of mapped with reference polygons and assessment of segmentation accuracy. Our review summarizes and discusses the current issues in object-based accuracy assessment to provide guidance for improved accuracy assessments for OBIA. Numéro de notice : A2018-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.002 Date de publication en ligne : 02/07/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90401
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 137 - 147[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Extracting leaf area index using viewing geometry effects : A new perspective on high-resolution unmanned aerial system photography / Lukas Roth in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : Extracting leaf area index using viewing geometry effects : A new perspective on high-resolution unmanned aerial system photography Type de document : Article/Communication Auteurs : Lukas Roth, Auteur ; Helge Aasen, Auteur ; Achim Walter, Auteur ; Frank Liebisch, Auteur Année de publication : 2018 Article en page(s) : pp 161 - 175 Note générale : Bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] cultures
[Termes IGN] drone
[Termes IGN] Glycine max
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] modélisation géométrique de prise de vue
[Termes IGN] orthoimage géoréférencée
[Termes IGN] segmentation d'image
[Termes IGN] simulation 3D
[Termes IGN] SuisseRésumé : (Editeur) Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI prediction accuracy was comparable with the one of a gap fraction-based handheld device ( of , RMSE of m 2m−2) and correlated well with destructive LAI measurements ( of , RMSE of m2 m−2). These results indicate that, if respecting the range (LAI ) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science. Numéro de notice : A2018-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.012 Date de publication en ligne : 07/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90402
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 161 - 175[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A light and faster regional convolutional neural network for object detection in optical remote sensing images / Peng Ding in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : A light and faster regional convolutional neural network for object detection in optical remote sensing images Type de document : Article/Communication Auteurs : Peng Ding, Auteur ; Ye Zhang, Auteur ; Wei-Jian Deng, Auteur ; Ping Jia, Auteur ; Arjan Kuijper, Auteur Année de publication : 2018 Article en page(s) : pp 208 - 218 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification orientée objet
[Termes IGN] détection d'objet
[Termes IGN] image aérienne
[Termes IGN] image terrestre
[Termes IGN] représentation multiple
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently. Numéro de notice : A2018-288 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.005 Date de publication en ligne : 14/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90403
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 208 - 218[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Exploring geo-tagged photos for land cover validation with deep learning / Hanfa Xing in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : Exploring geo-tagged photos for land cover validation with deep learning Type de document : Article/Communication Auteurs : Hanfa Xing, Auteur ; Yuan Meng, Auteur ; Zixuan Wang, Auteur ; Kaixuan Fan, Auteur ; Dongyang Hou, Auteur Année de publication : 2018 Article en page(s) : pp 237 - 251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'occupation du sol
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] échantillon
[Termes IGN] estimation de précision
[Termes IGN] géobalise
[Termes IGN] image numérique
[Termes IGN] occupation du sol
[Termes IGN] production participative
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Land cover validation plays an important role in the process of generating and distributing land cover thematic maps, which is usually implemented by high cost of sample interpretation with remotely sensed images or field survey. With an increasing availability of geo-tagged landscape photos, the automatic photo recognition methodologies, e.g., deep learning, can be effectively utilised for land cover applications. However, they have hardly been utilised in validation processes, as challenges remain in sample selection and classification for highly heterogeneous photos. This study proposed an approach to employ geo-tagged photos for land cover validation by using the deep learning technology. The approach first identified photos automatically based on the VGG-16 network. Then, samples for validation were selected and further classified by considering photos distribution and classification probabilities. The implementations were conducted for the validation of the GlobeLand30 land cover product in a heterogeneous area, western California. Experimental results represented promises in land cover validation, given that GlobeLand30 showed an overall accuracy of 83.80% with classified samples, which was close to the validation result of 80.45% based on visual interpretation. Additionally, the performances of deep learning based on ResNet-50 and AlexNet were also quantified, revealing no substantial differences in final validation results. The proposed approach ensures geo-tagged photo quality, and supports the sample classification strategy by considering photo distribution, with accuracy improvement from 72.07% to 79.33% compared with solely considering the single nearest photo. Consequently, the presented approach proves the feasibility of deep learning technology on land cover information identification of geo-tagged photos, and has a great potential to support and improve the efficiency of land cover validation. Numéro de notice : A2018-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.025 Date de publication en ligne : 16/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90404
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 237 - 251[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests / Nina Amiri in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests Type de document : Article/Communication Auteurs : Nina Amiri, Auteur ; Przemyslaw Polewski, Auteur ; Marco Heurich, Auteur ; Peter Krzystek, Auteur ; Andrew K. Skidmore, Auteur Année de publication : 2018 Article en page(s) : pp 265 - 274 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bavière (Allemagne)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] lasergrammétrie
[Termes IGN] Pinophyta
[Termes IGN] segmentation
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierMots-clés libres : Bavarian Forest National Park Résumé : (auteur) The development of new approaches to individual tree crown delineation for forest inventory and management is an important area of ongoing research. The increasing availability of high density ALS (Airborne Laser Scanning) point clouds offers the opportunity to segment the individual tree crowns and deduce their geometric properties with a high level of accuracy. Top-down segmentation methods such as normalized cut are established approaches for delineation of single trees in ALS point clouds. However, overlapping crowns and branches of nearby trees frequently cause over- and under-segmentation due to the difficulty of defining a single criterion for stopping the partitioning process. In this work, we investigate an adaptive stopping criterion based on the visual appearance of trees within the point clouds. We focus on coniferous trees due to their well-defined crown shapes in comparison to deciduous trees. This approach is based on modeling the coniferous tree crowns with elliptic paraboloids to infer whether a given 3D scene contains exactly one or more than one tree. For each processed scene, candidate tree peaks are generated from local maxima found within the point cloud. Next, paraboloids are fitted at the peaks using a random sample consensus procedure and classified based on their geometric properties. The decision to stop or continue partitioning is determined by finding a set of non-overlapping paraboloids. Experiments were performed on three plots from the Bavarian Forest National Park in Germany. Based on validation data from the field inventory, results show that our approach improves the segmentation quality by up to 10% across plots with different properties, such as average tree height and density. This indicates that the new adaptive stopping criterion for normalized cut segmentation is capable of delineating tree crowns more accurately than a static stopping criterion based on a constant Ncut threshold value. Numéro de notice : A2018-670 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.006 Date de publication en ligne : 29/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90405
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 265 - 274[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt