|
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -) ![]()
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2019061 | RAB | Revue | Centre de documentation | En réserve 3L | Disponible |
081-2019063 | DEP-RECP | Revue | LaSTIG | Dépôt en unité | Exclu du prêt |
081-2019062 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements


Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching / Kasper Kansanen in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching Type de document : Article/Communication Auteurs : Kasper Kansanen, Auteur ; Jari Vauhkonen, Auteur ; Timo Lähivaara, Auteur ; Aku Seppänen, Auteur ; Matti Maltamo, Auteur ; Lauri Mehtätalo, Auteur Année de publication : 2019 Article en page(s) : pp 66 - 78 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] appariement d'histogramme
[Termes IGN] chaîne de traitement
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] placette d'échantillonnage
[Termes IGN] surface terrière
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Errors in individual tree detection and delineation affect diameter distribution predictions based on crown attributes extracted from the detected trees. We develop a methodology for circumventing these problems. The method is based on matching cumulative distribution functions of field measured tree diameter distributions and crown radii distributions extracted from airborne laser scanning data through individual tree detection presented by Vauhkonen and Mehtätalo (2015). In this study, empirical distribution functions and a monotonic, nonlinear model curve are introduced. Tree crown radius distribution produced by individual tree detection is corrected by a method taking into account that all trees cannot be detected. The evaluation is based on the ability of the developed model sequence to predict quadratic mean diameter and total basal area. The studied data consists of 36 field plots in a typical boreal managed forest area in eastern Finland. The suggested enhancements to the model sequence produce improved results in most of the test cases. Most notably, in leave-one-out cross-validation experiments the modified models improve RMSE of basal area 13% in the full data and RMSE of quadratic mean diameter and basal area 69% and 11%, respectively, in pure pine plots. Better modeling of the crown radius distribution and improved matching between crown radii and stem diameters add the operational premises of the full distribution matching. Numéro de notice : A2019-455 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.007 Date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92868
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 66 - 78[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China / Xin Huang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China Type de document : Article/Communication Auteurs : Xin Huang, Auteur ; Ying Wang, Auteur Année de publication : 2019 Article en page(s) : pp 119 - 131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre urbain
[Termes IGN] Chine
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TIRS
[Termes IGN] image ZiYuan-3
[Termes IGN] morphologie urbaine
[Termes IGN] régression multiple
[Termes IGN] température au sol
[Termes IGN] Wuhan (Chine)Résumé : (Auteur) The Urban heat island (UHI) effect is an increasingly serious problem in urban areas. Information on the driving forces of intra-urban temperature variation is crucial for ameliorating the urban thermal environment. Although prior studies have suggested that urban morphology (e.g., landscape pattern, land-use type) can significantly affect land surface temperature (LST), few studies have explored the comprehensive effect of 2D and 3D urban morphology on LST in different urban functional zones (UFZs), especially at a fine scale. Therefore, in this research, we investigated the relationship between 2D/3D urban morphology and summer daytime LST in Wuhan, a representative megacity in Central China, which is known for its extremely hot weather in summer, by adopting high-resolution remote sensing data and geographical information data. The “urban morphology” in this study consists of 2D urban morphological parameters, 3D urban morphological parameters, and UFZs. Our results show that: (1) The LST is significantly related to 2D and 3D urban morphological parameters, and the scattered distribution of buildings with high rise can facilitate the mitigation of LST. Although sky view factor (SVF) is an important measure of 3D urban geometry, its influence on LST is complicated and context-dependent. (2) Trees are the most influential factor in reducing LST, and the cooling efficiency mainly depends on their proportions. The fragmented and irregular distribution of grass/shrubs also plays a significant role in alleviating LST. (3) With respect to UFZs, the residential zone is the largest heat source, whereas the highest LST appears in commercial and industrial zones. (4) Results of the multivariate regression and variation partitioning indicate that the relative importance of 2D and 3D urban morphological parameters on LST varies among different UFZs and 2D morphology outperforms 3D morphology in LST modulation. The results are generally consistent in spring, summer and autumn. These findings can provide insights for urban planners and designers on how to mitigate the surface UHI (SUHI) effect via rational landscape design and urban management during summer daytime. Numéro de notice : A2019-456 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.010 Date de publication en ligne : 22/04/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92869
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 119 - 131[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] forêt
[Termes IGN] géostatistique
[Termes IGN] image Landsat-OLI
[Termes IGN] image SPOT 5
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt