[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
[article]
Titre : Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover Type de document : Article/Communication Auteurs : Rei Sonobe, Auteur ; Yuki Yamaya, Auteur ; Hiroshi Tani, Auteur ; Xiufeng Wang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 839 - 855 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] rayonnement lumineux
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance végétale
[Termes IGN] signature spectrale
[Termes IGN] surface cultivéeRésumé : (auteur) Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification. Numéro de notice : A2019-514 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1425739 Date de publication en ligne : 19/01/2018 En ligne : https://doi.org/10.1080/10106049.2018.1425739 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93823
in Geocarto international > vol 34 n° 8 [15/06/2019] . - pp 839 - 855[article]A cognitive framework for road detection from high-resolution satellite images / Naveen Chandra in Geocarto international, vol 34 n° 8 ([15/06/2019])
[article]
Titre : A cognitive framework for road detection from high-resolution satellite images Type de document : Article/Communication Auteurs : Naveen Chandra, Auteur ; Jayanta Kumar Ghosh, Auteur ; Ashu Sharma, Auteur Année de publication : 2019 Article en page(s) : pp 909 - 924 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] cadre conceptuel
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] image satellite
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] représentation cognitive
[Termes IGN] zone urbaineRésumé : (auteur) Road network extraction from high-resolution satellite (HRS) imagery is a complex task. It is an important field of research and is widely used in various cartographic applications such as updating and generating maps. The objective of this research work is to develop a novel framework, emulating human cognition, for detection of roads from HRS images. Roads network from HRS images are detected using support vector machines within the different stages of cognitive task analysis. In the first stage, basic information about the cognitive parameters which are required for image interpretation is collected. In the second stage, the rule-based method is used for knowledge representation. Lastly, during knowledge elicitation, the developed rules are used to extract roads from HRS images. The proposed method is validated using 16 HRS images of developed suburban, developed urban, emerging suburban and emerging urban region. Numéro de notice : A2019-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1450451 Date de publication en ligne : 29/03/2018 En ligne : https://doi.org/10.1080/10106049.2018.1450451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93869
in Geocarto international > vol 34 n° 8 [15/06/2019] . - pp 909 - 924[article]