|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest / Aline Bernarda Debastiani in Annals of forest research, vol 62 n° 1 (January - June 2019)
![]()
[article]
Titre : Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest Type de document : Article/Communication Auteurs : Aline Bernarda Debastiani, Auteur ; Carlos Roberto Sanquetta, Auteur ; Ana Paula Dalla Corte, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 109 - 122 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Amazonie
[Termes IGN] apprentissage automatique
[Termes IGN] arbre aléatoire
[Termes IGN] bande C
[Termes IGN] biomasse aérienne
[Termes IGN] Brésil
[Termes IGN] forêt tropicale
[Termes IGN] fusion d'images
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) The aim of the present study is to evaluate the potential of C-band SAR data from the Sentinel-1/2 instruments and machine learning algorithms for the estimation of forest above ground forest biomass (AGB) in a high-biomass tropical ecosystem. This study was carried out in Jamari National Forest, located in the Brazilian Amazon. The response variable was AGB (Mg/ha) estimated from airborne laser surveys. The following treatments were considered as model predictors: 1) Sentinel-1 Sigma 0 at VV and VH polarizations; 2) (1) plus Sentinel-1 textural metrics; 3) (2) plus Sentinel-2 bands and derived vegetation indices (LAI, RVI, SAVI, NDVI).Our modeling design estimated the relative importance of SAR vs. optical variables in explaining AGB. The modeling was performed with twelve machine-learning algorithms including, neural network and regression tree. The addition of texture and optical data provided a noticeable improvement (3%) over models with SAR backscatter only. The best model performance was achieved with the Random Tree algorithm. Our results demonstrate the potential of freely-available SAR data and machine learning for mapping AGB in tropical ecosystems. Numéro de notice : A2019-335 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15287/afr.2018.1267 Date de publication en ligne : 30/07/2019 En ligne : http://dx.doi.org/10.15287%2Fafr.2018.1267 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93349
in Annals of forest research > vol 62 n° 1 (January - June 2019) . - pp 109 - 122[article]Forest inventory sensitivity to UAS-based image processing algorithms / Bonifasius Maturbongs in Annals of forest research, vol 62 n° 1 (January - June 2019)
![]()
[article]
Titre : Forest inventory sensitivity to UAS-based image processing algorithms Type de document : Article/Communication Auteurs : Bonifasius Maturbongs, Auteur ; Michael G. Wing, Auteur ; Bogdan M. Strimbu, Auteur ; Jon Burnett, Auteur Année de publication : 2019 Article en page(s) : pp 87 - 108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données lidar
[Termes IGN] gestion forestière
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] photographie aérienne
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] segmentation dynamique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Frequent and accurate estimation of forest structure parameters, such as number of trees per hectare or total height, are mandatory for sustainable forest management. Unmanned aircraft system (UAS) equipped with inexpensive sensors can be used to monitor and measure forest structure. The detailed information provided by the UAS allows tree level forest inventory. However, tree identification depends on a variety of parameters defining the image processing and tree segmentation algorithms. The objective of our study was to identify parameter combinations that accurately delineated trees and their heights. We evaluated the impact of different tree segmentation and point cloud generation algorithms on forest inventory from imagery collected with a UAS over a mature Douglas-fir plantation forest. We processed the images with two commonly used commercial software packages, Agisoft PhotoScan and Pix4Dmapper, both implementing image processing algorithms called Structure from Motion. For each software we generated photogrammetric point clouds by varying the parameters defining the implementation. We segmented individual trees and heights using three tree algorithms: Variable Window Filter, Graph-Theoretical, and Watershed Segmentation. We assessed the impact of image processing algorithms on forest inventory by comparing the estimated trees with trees manually identified from the point clouds. We found that the type of tree segmentation and image processing algorithms have a significant effect in accurately identifying trees. For tree height estimation, we found strong evidence that image processing algorithms had significant effects, whereas tree segmentation algorithms did not significantly affect tree height estimation.These findings may be of interest to others that are using high-resolution spatial imagery to estimate forest inventory parameters. Numéro de notice : A2019-580 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.15287/afr.2018.1282 Date de publication en ligne : 30/07/2019 En ligne : http://dx.doi.org/10.15287/afr.2018.1282 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94487
in Annals of forest research > vol 62 n° 1 (January - June 2019) . - pp 87 - 108[article]