|
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -) ![]()
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2019091 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements


Enhanced 3D mapping with an RGB-D sensor via integration of depth measurements and image sequences / Bo Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
![]()
[article]
Titre : Enhanced 3D mapping with an RGB-D sensor via integration of depth measurements and image sequences Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Xuming Ge, Auteur ; Linfu Xie, Auteur ; Wu Chen, Auteur Année de publication : 2019 Article en page(s) : pp 633 - 642 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'intérieur
[Termes IGN] carte de profondeur
[Termes IGN] cartographie 3D
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] image RVB
[Termes IGN] intégration de données
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] structure-from-motionRésumé : (Auteur) State-of-the-art visual simultaneous localization and mapping (SLAM) techniques greatly facilitate three-dimensional (3D) mapping and modeling with the use of low-cost red-green-blue-depth (RGB-D) sensors. However, the effective range of such sensors is limited due to the working range of the infra-red (IR) camera, which provides depth information, and thus the practicability of such sensors in 3D mapping and modeling is limited. To address this limitation, we present a novel solution for enhanced 3D mapping using a low-cost RGB-D sensor. We carry out state-of-the-art visual SLAM to obtain 3D point clouds within the mapping range of the RGB-D sensor and implement an improved structure-from-motion (SfM) on the collected RGB image sequences with additional constraints from the depth information to produce image-based 3D point clouds. We then develop a feature-based scale-adaptive registration to merge the gained point clouds to further generate enhanced and extended 3D mapping results. We use two challenging test sites to examine the proposed method. At these two sites, the coverage of both generated 3D models increases by more than 50% with the proposed solution. Moreover, the proposed solution achieves a geometric accuracy of about 1% in a measurement range of about 20 m. These positive experimental results not only demonstrate the feasibility and practicality of the proposed solution but also its potential. Numéro de notice : A2019-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.633 Date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.633 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93542
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 633 - 642[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible PPD: Pyramid Patch Descriptor via convolutional neural network / Jie Wan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
![]()
[article]
Titre : PPD: Pyramid Patch Descriptor via convolutional neural network Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Alper Yilmaz, Auteur ; Lei Yan, Auteur Année de publication : 2019 Article en page(s) : pp 673 - 686 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] benchmark spatial
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées de référence
[Termes IGN] échantillonnage d'image
[Termes IGN] état de l'art
[Termes IGN] extraction de données
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] jeu de données localiséesRésumé : (Auteur) Local features play an important role in remote sensing image matching, and handcrafted features have been excessively used in this area for a long time. This article proposes a pyramid convolutional neural triplet network that extracts a 128-dimensional deep descriptor that significantly improves the matching performance. The proposed approach first extracts deep descriptors of the anchor patches and corresponding positive patches in a batch using the proposed pyramid convolutional neural network. Following this step, the approaches chooses the closest negative patch for each anchor patch and corresponding positive patch pair to form the triplet sample based on the descriptor distances among all other image patches in the batch. These triplets are used to optimize the parameters of the network using a new loss function. We evaluated the proposed deep descriptors on two benchmark data sets (Brown and HPatches) as well as real image data sets. The results reveal that the proposed descriptor achieves the state-of-the-art performance on the Brown data set and a comparatively very high performance on the HPatches data set. The proposed approach finds more correct matches than the classical handcrafted feature descriptors on aerial image pairs and is observed to be robust to variations in the viewpoint and illumination. Numéro de notice : A2019-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.673 Date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.673 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93543
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 673 - 686[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible