Paru le : 01/04/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Automated terrain feature identification from remote sensing imagery: a deep learning approach / Wenwen Li in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : Automated terrain feature identification from remote sensing imagery: a deep learning approach Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Chia-Yu Hsu, Auteur Année de publication : 2020 Article en page(s) : pp 637 - 660 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] analyse du paysage
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données d'images
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] intelligence artificielleRésumé : (auteur) Terrain feature detection is a fundamental task in terrain analysis and landscape scene interpretation. Discovering where a specific feature (i.e. sand dune, crater, etc.) is located and how it evolves over time is essential for understanding landform processes and their impacts on the environment, ecosystem, and human population. Traditional induction-based approaches are challenged by their inefficiency for generalizing diverse and complex terrain features as well as their performance for scalable processing of the massive geospatial data available. This paper presents a new deep learning (DL) approach to support automatic detection of terrain features from remotely sensed images. The novelty of this work lies in: (1) a terrain feature database containing 12,000 remotely sensed images (1,000 original images and 11,000 derived images from data augmentation) that supports data-driven model training and new discovery; (2) a DL-based object detection network empowered by ensemble learning and deep and deeper convolutional neural networks to achieve high-accuracy object detection; and (3) fine-tuning the model’s characteristics and behaviors to identify the best combination of hyperparameters and other network factors. The introduction of DL into geospatial applications is expected to contribute significantly to intelligent terrain analysis, landscape scene interpretation, and the maturation of spatial data science. Numéro de notice : A2020-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1542697 date de publication en ligne : 07/11/2018 En ligne : https://doi.org/10.1080/13658816.2018.1542697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94708
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 637 - 660[article]Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds / Zhou Guo in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds Type de document : Article/Communication Auteurs : Zhou Guo, Auteur ; Chen-Chieh Feng, Auteur Année de publication : 2020 Article en page(s) : pp 661 - 680 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] Oakland (Californie)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Point cloud classification, which provides meaningful semantic labels to the points in a point cloud, is essential for generating three-dimensional (3D) models. Its automation, however, remains challenging due to varying point densities and irregular point distributions. Adapting existing deep-learning approaches for two-dimensional (2D) image classification to point cloud classification is inefficient and results in the loss of information valuable for point cloud classification. In this article, a new approach that classifies point cloud directly in 3D is proposed. The approach uses multi-scale features generated by deep learning. It comprises three steps: (1) extract single-scale deep features using 3D convolutional neural network (CNN); (2) subsample the input point cloud at multiple scales, with the point cloud at each scale being an input to the 3D CNN, and combine deep features at multiple scales to form multi-scale and hierarchical features; and (3) retrieve the probabilities that each point belongs to the intended semantic category using a softmax regression classifier. The proposed approach was tested against two publicly available point cloud datasets to demonstrate its performance and compared to the results produced by other existing approaches. The experiment results achieved 96.89% overall accuracy on the Oakland dataset and 91.89% overall accuracy on the Europe dataset, which are the highest among the considered methods. Numéro de notice : A2020-109 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1552790 date de publication en ligne : 10/12/2018 En ligne : https://doi.org/10.1080/13658816.2018.1552790 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94711
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 661 - 680[article]Street-Frontage-Net: urban image classification using deep convolutional neural networks / Stephen Law in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : Street-Frontage-Net: urban image classification using deep convolutional neural networks Type de document : Article/Communication Auteurs : Stephen Law, Auteur ; Chanuki Illushka Seresinhe, Auteur ; Yao Shen, Auteur Année de publication : 2020 Article en page(s) : pp 681- 707 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espace public
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] façade
[Termes descripteurs IGN] habitat urbain
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] immobilier (secteur)
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] matrice de confusion
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] paysage urbain
[Termes descripteurs IGN] urbanisme
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) Quantifying aspects of urban design on a massive scale is crucial to help develop a deeper understanding of urban designs elements that contribute to the success of a public space. In this study, we further develop the Street-Frontage-Net (SFN), a convolutional neural network (CNN) that can successfully evaluate the quality of street frontage as either being active (frontage containing windows and doors) or blank (frontage containing walls, fences and garages). Small-scale studies have indicated that the more active the frontage, the livelier and safer a street feels. However, collecting the city-level data necessary to evaluate street frontage quality is costly. The SFN model uses a deep CNN to classify the frontage of a street. This study expands on the previous research via five experiments. We find robust results in classifying frontage quality for an out-of-sample test set that achieves an accuracy of up to 92.0%. We also find active frontages in a neighbourhood has a significant link with increased house prices. Lastly, we find that active frontage is associated with more scenicness compared to blank frontage. While further research is needed, the results indicate the great potential for using deep learning methods in geographic information extraction and urban design. Numéro de notice : A2020-110 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1555832 date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1080/13658816.2018.1555832 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94712
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 681- 707[article]A global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : A global analysis of cities’ geosocial temporal signatures for points of interest hours of operation Type de document : Article/Communication Auteurs : Kevin Sparks, Auteur ; Gautam Thakur, Auteur ; Amol Pasarkar, Auteur ; Marie Urban, Auteur Année de publication : 2020 Article en page(s) : pp 759 - 776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] climat urbain
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] coutume
[Termes descripteurs IGN] démographie
[Termes descripteurs IGN] données géophysiques
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] estimation quantitative
[Termes descripteurs IGN] ethnologie
[Termes descripteurs IGN] géographie sociale
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] trace numériqueRésumé : (auteur) The temporal nature of humans interaction with Points of Interest (POIs) in cities can differ depending on place type and regional location. Times when many people are likely to visit restaurants (place type) in Italy, may differ from times when many people are likely to visit restaurants in Lebanon (i.e. regional differences). Geosocial data are a powerful resource to model these temporal differences in cities, as traditional methods used to study cross-cultural differences do not scale to a global level. As cities continue to grow in population and economic development, research identifying the social and geophysical (e.g., climate) factors that influence city function remains important and incomplete. In this work, we take a quantitative approach, applying dynamic time warping and hierarchical clustering on temporal signatures to model geosocial temporal patterns for Retail and Restaurant Facebook POIs hours of operation for more than 100 cities in 90 countries around the world. Results show cities’ temporal patterns cluster to reflect the cultural region they represent. Furthermore, temporal patterns are influenced by a mix of social and geophysical factors. Trends in the data suggest social factors influence unique drops in temporal signatures, and geophysical factors influence when daily temporal patterns start and finish. Numéro de notice : A2020-294 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1615069 date de publication en ligne : 04/06/2019 En ligne : https://doi.org/10.1080/13658816.2019.1615069 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95126
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 759 - 776[article]