|
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -) ![]()
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020051 | RAB | Revue | Centre de documentation | En réserve 3L | Disponible |
081-2020053 | DEP-RECP | Revue | LaSTIG | Dépôt en unité | Exclu du prêt |
081-2020052 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements


Region level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Region level SAR image classification using deep features and spatial constraints Type de document : Article/Communication Auteurs : Anjun Zhang, Auteur ; Xuezhi Yang, Auteur ; Shuai Fang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 36-48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] carte de confiance
[Termes IGN] champ aléatoire de Markov
[Termes IGN] chatoiement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image radar moirée
[Termes IGN] lissage de données
[Termes IGN] modélisation spatiale
[Termes IGN] précision de la classification
[Termes IGN] superpixelRésumé : (auteur) The region-level SAR image classification algorithms which combine CNN (Convolutional Neural Networks) with super-pixel have been proposed to enhance the classification accuracy compared with the pixel-level algorithms. However, the spatial constraints between the super-pixel regions are not considered, which may limit the performance of these algorithms. To address this problem, an RCC-MRF (RCC, Region Category Confidence-degree) and CNN based region-level SAR image classification algorithm which explores the deep features extracted by CNN and the spatial constraints between super-pixel regions is proposed in this paper. The initial labels of super-pixel regions are obtained using a voting strategy based on the predicted labels CNN. The unary energy function of RCC-MRF is designed to find the category that a region most probably belongs to by using the RCC term which is constructed based on the probability distributions over all categories of pixels predicted by CNN. The binary energy function of RCC-MRF explores the spatial constraints between the adjacent super-pixel regions. In our proposed algorithm, the pixel-level misclassifications can be reduced by the smoothing within regions and the region-level misclassifications will be rectified by minimizing the energy function of RCC-MRF. Experiments have been done on simulated and real SAR images to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm notably outperforms the other CNN-based region-level SAR image classification algorithms. Numéro de notice : A2020-136 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.001 Date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94752
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 36-48[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation / Anxiu Yang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation Type de document : Article/Communication Auteurs : Anxiu Yang, Auteur ; Fanlin Yang, Auteur ; Dianpeng Su, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 49 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] ajustement de paramètres
[Termes IGN] Chine
[Termes IGN] courbe de Gauss
[Termes IGN] données lidar
[Termes IGN] filtrage de points
[Termes IGN] itération
[Termes IGN] lidar bathymétrique
[Termes IGN] relief sous-marin
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (auteur) Current filtering methods of airborne LiDAR bathymetry (ALB) point clouds cannot identify negative anomalies or avoid over-filtering of the data. To overcome these problems, we propose a bidirectional cloth simulation filtering (BCSF) method and verify it using captured data. First, a transfer iterative trend surface is established to eliminate the negative anomalies and realize the continuous expression of the seafloor topography. The terrain complexities of the seafloor points are calculated using four extracted feature factors: slope, standard deviation of depth, Gaussian curvature, and roughness. We then calculate the sub-regional terrain complexity and the adaptive distance threshold and obtain user-defined parameters. Finally, sub-regional filtering is carried out, and a filtered surface is established to solve the over-filtering problem of convex and concave seafloor topographies based on the BCSF correction model. To evaluate the performance of the proposed method, the BCSF method was applied to ALB data captured around Yuanzhi Island in the South China Sea. The experimental results show that the BCSF method effectively filters out non-seafloor points and fully preserves the seafloor microtopography to realize the integrity of the seafloor topography. The proposed BCSF method outperforms the cloth simulation filtering method in terms of the elimination rate, which decreases from 38.78% to 2.52% and from 29.52% to 0.70% in the whole study area and local study area, respectively. Consequently, the BCSF method that combines forward filtering with inverse filtering exhibits complementary advantages, avoids over-filtering, and demonstrates strong adaptability and robustness for ALB data. Numéro de notice : A2020-137 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.004 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94755
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 49 - 61[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France / Edward Salameh in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France Type de document : Article/Communication Auteurs : Edward Salameh, Auteur ; Frédéric Frappart, Auteur ; Imen Turki, Auteur ; Benoit Laignel, Auteur Année de publication : 2020 Article en page(s) : pp 98 - 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] aménagement du littoral
[Termes IGN] Arcachon (bassin d')
[Termes IGN] carte topographique
[Termes IGN] Cotentin
[Termes IGN] estran
[Termes IGN] France (administrative)
[Termes IGN] hydrodynamique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] niveau de l'eau
[Termes IGN] sédiment
[Termes IGN] télédétection spatiale
[Termes IGN] trait de côte
[Termes IGN] zone tamponRésumé : (auteur) Intertidal flats lying as a buffer zone between land and sea provide critical services including protection against storm surges and coastal flooding. These environments are characterized by a continuous redistribution of sediment and changes in topography. Sea level rise, anthropogenic pressures, and their related stressors have a considerable impact on these areas and are expected to put them under more stress; hence the increased need for frequent and updated topography maps. Comparing to traditional surveying approaches, spaceborne remote sensing is able to provide topography maps more frequently with a lower cost and a higher coverage. The latter is currently considered as an established tool for measuring intertidal topography. In this study, an improved approach of the waterline method was developed to derive intertidal Digital Elevation Models (DEMs). The changes include a faster, more efficient and quasi-automatic detection and post-processing of waterlines. The edge detection technique consists in combining a k-means based segmentation and an active contouring procedure. This method was designed to generate closed contours in order to enable an automatization of the post-processing of the extracted waterlines. The waterlines were extracted from Sentinel-1 and Sentinel-2 images for two bays located on the French Coast: the Arcachon lagoon and the Bay of Veys. DEMs were generated for the Arcachon Bay between 2015 and 2018, and for the Bay of Veys between 2016 and 2018 using satellite acquisitions made during summer (low storm activity period). The comparison of the generated DEMs with lidar observations showed an error of about 19–25 cm. This study also demonstrated that the waterline method applied to Sentinel images is suitable for monitoring the morpho-sedimentary evolution in intertidal areas. By comparing the DEMs generated between 2016 and 2018, the Arcachon Bay and the Bay of Veys experienced net volume losses of 1.12 × 106 m3 and 0.70 × 106 m3 respectively. The generated DEMs provide useful and needed information for several scientific applications (e.g., sediment balance, hydrodynamic modelling), but also for authorities and stakeholders for coastal management and implementation of ecosystem protection policies. Numéro de notice : A2020-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.003 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94756
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 98 - 120[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images Type de document : Article/Communication Auteurs : Zhen Guan, Auteur ; Amr Abd-Elrahman, Auteur ; Zhen Fan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 171 - 186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] canopée
[Termes IGN] données spatiotemporelles
[Termes IGN] hauteur de la végétation
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] orthophotoplan numérique
[Termes IGN] phénologie
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Quantifying canopy biophysical parameters is critical to agricultural research and farm management. In this study, strawberry dry biomass and leaf area were modeled statistically using high spatial and temporal resolution imagery. A mobile field data acquisition system was used to acquire thousands of very high resolution (~0.5 mm) close-range images seven times throughout the strawberry growing season. Ortho-mosaics and dense point clouds were generated through Structure from Motion (SfM) and used in Object-Based Image Analysis (OBIA) at the sub-leaf level to extract canopy structure variables such as planimetric canopy area, canopy average height, and canopy smoothness metric. Regression analysis was carried out using these image-derived canopy variables as predictors to model leaf area ( = 0.79; ten-fold cross-validation RMSE = 0.056 m2) and dry biomass ( = 0.84; ten-fold cross-validation RMSE = 7.72 g) obtained through destructive measurements. Results indicate consistent predictive power through the season and across 17 strawberry genotypes. The study showed that the canopy smoothness metric developed in this study as an indicator of canopy density could complement other variables (planimetric canopy area, canopy average height) that describe canopy geometric properties. Numéro de notice : A2020-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.021 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94757
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 171 - 186[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt