|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
|
Dépouillements


Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms / Gustavo H.X. Shiroma in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms Type de document : Article/Communication Auteurs : Gustavo H.X. Shiroma, Auteur ; Marco Lavalle, Auteur Année de publication : 2020 Article en page(s) : pp 754 - 3777 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande L
[Termes IGN] décomposition de Gauss
[Termes IGN] Gabon
[Termes IGN] histogramme
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] polarimétrie radar
[Termes IGN] rétrodiffusion
[Termes IGN] structure de la végétationRésumé : (auteur) This article demonstrates how 3-D vegetation structure can be approximated by interferometric synthetic aperture radar (InSAR) backscatter-height histograms. Single-look backscatter measurements are plotted against the InSAR phase height and are aggregated spatially over a forest patch to form a 3-D histogram, referred to as InSAR backscatter-height histogram or simply InSAR histogram. InSAR histograms resemble LiDAR waveforms, suggesting that existing algorithms used to retrieve canopy height and ground topography from radar tomograms or LiDAR waveforms can be applied to InSAR histograms. Three algorithms are evaluated to generate maps of digital terrain, surface, and canopy height models: Gaussian decomposition, quantile, and backscatter threshold. Full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) data collected over the Gabonese Lopé National Park during the 2016 AfriSAR campaign are used to illustrate and compare the performance of the algorithms for the HH, HV, VV, HH+VV, and HH−VV polarimetric channels. Results show that radar-derived maps using the InSAR histograms differ by 4 m (top-canopy), 5 m (terrain), and 6 m (forest height) in terms of average root-mean-square errors (RMSEs) from standard maps derived from full-waveform laser, vegetation, and ice sensor (LVIS) LiDAR measurements. Numéro de notice : A2020-279 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2956989 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2956989 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95099
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 754 - 3777[article]Ensemble learning for hyperspectral image classification using tangent collaborative representation / Hongjun Su in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Ensemble learning for hyperspectral image classification using tangent collaborative representation Type de document : Article/Communication Auteurs : Hongjun Su, Auteur ; Yao Yu, Auteur ; Qian Du, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3778 - 3790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] boosting adapté
[Termes IGN] Bootstrap (statistique)
[Termes IGN] classification
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] conception collaborative
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] image hyperspectrale
[Termes IGN] neurone artificiel
[Termes IGN] performance
[Termes IGN] régressionRésumé : (auteur) Recently, collaborative representation classification (CRC) has attracted much attention for hyperspectral image analysis. In particular, tangent space CRC (TCRC) has achieved excellent performance for hyperspectral image classification in a simplified tangent space. In this article, novel Bagging-based TCRC (TCRC-bagging) and Boosting-based TCRC (TCRC-boosting) methods are proposed. The main idea of TCRC-bagging is to generate diverse TCRC classification results using the bootstrap sample method, which can enhance the accuracy and diversity of a single classifier simultaneously. For TCRC-boosting, it can provide the most informative training samples by changing their distributions dynamically for each base TCRC learner. The effectiveness of the proposed methods is validated using three real hyperspectral data sets. The experimental results show that both TCRC-bagging and TCRC-boosting outperform their single classifier counterpart. In particular, the TCRC-boosting provides superior performance compared with the TCRC-bagging. Numéro de notice : A2020-280 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2957135 Date de publication en ligne : 01/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2957135 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95100
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 3778 - 3790[article]Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz / Ana Aldarias in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz Type de document : Article/Communication Auteurs : Ana Aldarias, Auteur ; Jesus Gomez-Enri, Auteur ; Irene Laiz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3809 - 3821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] coefficient de corrélation
[Termes IGN] correction troposphérique
[Termes IGN] courbe de Pearson
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] eaux côtières
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Espagne
[Termes IGN] forme d'onde
[Termes IGN] image Sentinel-SRAL
[Termes IGN] niveau de la mer
[Termes IGN] série temporelleRésumé : (auteur) Altimetry data of two and a half years (June 2016–November 2018) of Sentinel-3A SRAL (S3A-SRAL) were validated at the sampling frequency of 80 Hz. The data were obtained from the European Space Agency (ESA) Grid Processing On Demand (GPOD) service over three coastal sites in Spain: Huelva (HU) (Gulf of Cádiz), Barcelona (BA) (Western Mediterranean Sea), and Bilbao (BI) (Bay of Biscay). Two tracks were selected in each site: one ascending and one descending. Data were validated using in situ tide gauge (TG) data provided by the Spanish Puertos del Estado. The altimetry sea level anomaly time series were obtained using the corrections available in GPOD with the exception of the sea state bias (SSB) correction, not available at 80 Hz. Hence, the SSB was approximated to 5% of the significant wave height (SWH). The validation was performed using two statistical parameters, the Pearson correlation coefficient (r) and the root mean square error (rmse). In the 5–20-km segment with respect to the coastline, the results were 6–8 cm (rmse) and 0.7–0.8 (r) for all the tracks. The 0–5-km segment was also analyzed in detail to study the land effect on the altimetry data quality. The results showed that the track orientation, the angle of intersection with the coast, and the land topography concur to determine the nearest distance to the coast at which the data retain a similar level of accuracy than in the 5–20-km segment. This “distance of good quality” to shore reaches a minimum of 3 km for the tracks at HU and the descending track at BA. Numéro de notice : A2020-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2957649 Date de publication en ligne : 01/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2957649 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95102
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 3809 - 3821[article]Improved SMAP dual-channel algorithm for the retrieval of soil moisture / Mario Julian Chaubell in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Improved SMAP dual-channel algorithm for the retrieval of soil moisture Type de document : Article/Communication Auteurs : Mario Julian Chaubell, Auteur ; Simon H. Yueh, Auteur ; R. Scott Dunbar, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3894 - 3905 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] humidité du sol
[Termes IGN] mission SMAP
[Termes IGN] polarisation
[Termes IGN] radiomètre
[Termes IGN] rugosité
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) The soil moisture active passive (SMAP) mission was designed to acquire L-band radiometer measurements for the estimation of soil moisture (SM) with an average ubRMSD of not more than 0.04 m3/m3 volumetric accuracy in the top 5 cm for vegetation with a water content of less than 5 kg/ m2 . Single-channel algorithm (SCA) and dual-channel algorithm (DCA) are implemented for the processing of SMAP radiometer data. The SCA using the vertically polarized brightness temperature (SCA-V) has been providing satisfactory SM retrievals. However, the DCA using prelaunch design and algorithm parameters for vertical and horizontal polarization data has a marginal performance. In this article, we show that with the updates of the roughness parameter h and the polarization mixing parameters Q , a modified DCA (MDCA) can achieve improved accuracy over DCA; it also allows for the retrieval of vegetation optical depth (VOD or τ ). The retrieval performance of MDCA is assessed and compared with SCA-V and DCA using four years (April 1, 2015 to March 31, 2019) of in situ data from core validation sites (CVSs) and sparse networks. The assessment shows that SCA-V still outperforms all the implemented algorithms. Numéro de notice : A2020-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2959239 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2959239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95104
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 3894 - 3905[article]Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance / Bing Tu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance Type de document : Article/Communication Auteurs : Bing Tu, Auteur ; Chengle Zhou, Auteur ; Danbing He, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4116 - 4131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] erreur d'échantillon
[Termes IGN] image hyperspectrale
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] superpixelRésumé : (auteur) Classification is an important technique for remotely sensed hyperspectral image (HSI) exploitation. Often, the presence of wrong (noisy) labels presents a drawback for accurate supervised classification. In this article, we introduce a new framework for noisy label detection that combines a superpixel-to-pixel weighting distance (SPWD) and density peak clustering. The proposed method is able to accurately detect and remove noisy labels in the training set before HSI classification. It considers two weak assumptions when exploiting the spectral–spatial information contained in the HSI: 1) all the pixels in a superpixel belong to the same class and 2) close pixels in spectral space have the same label. The proposed method consists of the following steps. First, a superpixel segmentation step is used to obtain self-adaptive spatial information for each training sample. Then, a metric is utilized to measure the spectral distance information between each superpixel and pixel. Meanwhile, in order to overcome the first weak assumption, we use K nearest neighbors to obtain the closest neighborhoods of pixels around each superpixel, and a Gaussian weight is employed to mitigate the second weak assumption by adapting the original distance information. Next, the noisy labels in the original training set are removed by a density threshold-based decision function. Finally, the support vector machine (SVM) classifier is employed to evaluate the effectiveness of the proposed SPWD detection method in terms of classification accuracy. Experiments performed on several real HSI data sets demonstrate that the method can effectively improve the performance of classifiers trained with noisy training sets in terms of classification accuracy. Numéro de notice : A2020-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961141 Date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961141 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95105
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4116 - 4131[article]Subpixel SAR image registration through parabolic interpolation of the 2-D cross correlation / Luca Pallotta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Subpixel SAR image registration through parabolic interpolation of the 2-D cross correlation Type de document : Article/Communication Auteurs : Luca Pallotta, Auteur ; Gaetano Giunta, Auteur ; Carmine Clemente, Auteur Année de publication : 2020 Article en page(s) : pp 4132 - 4144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse infrapixellaire
[Termes IGN] corrélation croisée normalisée
[Termes IGN] image captée par drone
[Termes IGN] image radar moirée
[Termes IGN] interpolation
[Termes IGN] précision infrapixellaireRésumé : (auteur) In this article, the problem of synthetic aperture radar (SAR) images coregistration is considered. In particular, a novel algorithm aimed at achieving a fine subpixel coregistration accuracy is developed. The procedure is based on the parabolic interpolation of the 2-D cross correlation computed between the two SAR images to be aligned. More precisely, from the 2-D cross correlation, a neighborhood of its peak value is extracted and the interpolation of both the 2-D paraboloid and the two alternative 1-D parabolas is computed to provide the finer misregistration estimation with subpixel accuracy. The main advantage of the proposed framework is that the overall computational burden is only due to the 2-D cross correlation estimation since the parabolic interpolation is calculated with a closed-form expression. The results obtained on real recorded unmanned aerial vehicle (UAV) SAR data highlight the effectiveness of the proposed approach as well as its capabilities to provide some benefits with respect to other available strategies. Numéro de notice : A2020-284 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961245 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961245 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95107
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4132 - 4144[article]ALERT: adversarial learning with expert regularization using Tikhonov operator for missing band reconstruction / Litu Rout in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : ALERT: adversarial learning with expert regularization using Tikhonov operator for missing band reconstruction Type de document : Article/Communication Auteurs : Litu Rout, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] bande spectrale
[Termes IGN] cohérence géométrique
[Termes IGN] correction d'image
[Termes IGN] dégradation d'image
[Termes IGN] image Worldview
[Termes IGN] pollution acoustique
[Termes IGN] qualité d'image
[Termes IGN] régularisation de TychonoffRésumé : (auteur) The Earth observation using remote sensing is one of the most important technologies to assimilate key attributes about the Earth’s surface. To achieve tangible consequence, the internal building blocks of such a complex system must operate flawlessly. However, due to a dynamically changing environment, degradation in sensor electronics, and extreme weather condition remotely sensed images often miss essential information. As the sensors operate over several years in space the likelihood of sensor degradation persists. This results in commonly observed issues, such as stripe noise, missing partial data, and missing band. Various ground-based solutions have been developed to address these technological bottlenecks individually. In this article, we devise a method, which we call ALERT, to tackle missing band reconstruction. The proposed method reconstructs the missing band with the sole supervision of spectral and spatial priors. We compare the proposed framework with state-of-the-art methods and show compelling improvement both qualitatively and quantitatively. We provide both theoretical and empirical evidence of better performance by regularized adversarial learning as compared to complete supervision. Furthermore, we propose a new residual-dense-block (RDB) module to preserve geometric fidelity and assist in efficient gradient flow. We show that ALERT captures essential features such that the spatial and spectral characteristics of the reconstructed band remains preserved. To critically analyze the generalization we test the performance on two different satellite data sets: Resourcesat-2A and WorldView-2. As per our extensive experimentation, the proposed method achieves 20.72%, 13.81%, 1.05%, 15.91%, and 2.94% improvement in the root mean square error (RMSE), SAM, SSIM, PSNR, and SRE, respectively, over the state-of-the-art model. Numéro de notice : A2020-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2963818 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2963818 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95108
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020)[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] coin réflecteur
[Termes IGN] dégradation du signal
[Termes IGN] données polarimétriques
[Termes IGN] étalonnage
[Termes IGN] extraction automatique
[Termes IGN] image radar moirée
[Termes IGN] interruption du signal
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]